Suppr超能文献

基质金属蛋白酶抑制剂的虚拟高通量筛选

Virtual High-Throughput Screening for Matrix Metalloproteinase Inhibitors.

作者信息

Choi Jun Yong, Fuerst Rita

机构信息

Department of Chemistry, The Scripps Research Institute, Jupiter, FL, 33458, USA.

出版信息

Methods Mol Biol. 2017;1579:259-271. doi: 10.1007/978-1-4939-6863-3_14.

Abstract

Structure-based virtual screening (SBVS) is a common method for the fast identification of hit structures at the beginning of a medicinal chemistry program in drug discovery. The SBVS, described in this manuscript, is focused on finding small molecule hits that can be further utilized as a starting point for the development of inhibitors of matrix metalloproteinase 13 (MMP-13) via structure-based molecular design. We intended to identify a set of structurally diverse hits, which occupy all subsites (S1'-S3', S2, and S3) centering the zinc containing binding site of MMP-13, by the virtual screening of a chemical library comprising more than ten million commercially available compounds. In total, 23 compounds were found as potential MMP-13 inhibitors using Glide docking followed by the analysis of the structural interaction fingerprints (SIFt) of the docked structures.

摘要

基于结构的虚拟筛选(SBVS)是药物发现中药物化学项目初期快速鉴定活性结构的常用方法。本手稿中描述的SBVS专注于寻找小分子活性物质,这些物质可通过基于结构的分子设计进一步用作开发基质金属蛋白酶13(MMP - 13)抑制剂的起点。我们旨在通过对包含超过一千万种市售化合物的化学文库进行虚拟筛选,鉴定出一组结构多样的活性物质,这些活性物质占据以MMP - 13含锌结合位点为中心的所有亚位点(S1'-S3'、S2和S3)。使用Glide对接并随后分析对接结构的结构相互作用指纹(SIFt),总共发现了23种化合物作为潜在的MMP - 13抑制剂。

相似文献

1
Virtual High-Throughput Screening for Matrix Metalloproteinase Inhibitors.
Methods Mol Biol. 2017;1579:259-271. doi: 10.1007/978-1-4939-6863-3_14.
3
Structure-Based Design and Synthesis of Potent and Selective Matrix Metalloproteinase 13 Inhibitors.
J Med Chem. 2017 Jul 13;60(13):5816-5825. doi: 10.1021/acs.jmedchem.7b00514. Epub 2017 Jun 27.
5
Identification of matrix metalloproteinase inhibitors by chemical arrays.
Biosci Biotechnol Biochem. 2015;79(10):1597-602. doi: 10.1080/09168451.2015.1045829. Epub 2015 May 19.
6
Potent inhibitors precise to S1' loop of MMP-13, a crucial target for osteoarthritis.
J Mol Graph Model. 2013 Jul;44:297-310. doi: 10.1016/j.jmgm.2013.06.005. Epub 2013 Jul 4.
7
Identification of Broad-Spectrum MMP Inhibitors by Virtual Screening.
Molecules. 2021 Jul 28;26(15):4553. doi: 10.3390/molecules26154553.
9
Practices in Molecular Docking and Structure-Based Virtual Screening.
Methods Mol Biol. 2018;1762:31-50. doi: 10.1007/978-1-4939-7756-7_3.
10
Identification of Non-Zinc Binding Inhibitors of MMP-2 Through Virtual Screening and Subsequent Rescoring.
Drug Res (Stuttg). 2018 Sep;68(9):529-535. doi: 10.1055/a-0586-8308. Epub 2018 Apr 3.

本文引用的文献

1
DOCK 6: Impact of new features and current docking performance.
J Comput Chem. 2015 Jun 5;36(15):1132-56. doi: 10.1002/jcc.23905.
2
Is there new hope for therapeutic matrix metalloproteinase inhibition?
Nat Rev Drug Discov. 2014 Dec;13(12):904-27. doi: 10.1038/nrd4390. Epub 2014 Nov 7.
4
Chemistry: Chemical con artists foil drug discovery.
Nature. 2014 Sep 25;513(7519):481-3. doi: 10.1038/513481a.
5
ZINC: a free tool to discover chemistry for biology.
J Chem Inf Model. 2012 Jul 23;52(7):1757-68. doi: 10.1021/ci3001277. Epub 2012 Jun 15.
6
Structure-based virtual screening for drug discovery: a problem-centric review.
AAPS J. 2012 Mar;14(1):133-41. doi: 10.1208/s12248-012-9322-0. Epub 2012 Jan 27.
8
10
SwissDock, a protein-small molecule docking web service based on EADock DSS.
Nucleic Acids Res. 2011 Jul;39(Web Server issue):W270-7. doi: 10.1093/nar/gkr366. Epub 2011 May 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验