Suppr超能文献

分子对接与基于结构的虚拟筛选实践。

Practices in Molecular Docking and Structure-Based Virtual Screening.

作者信息

Dos Santos Ricardo N, Ferreira Leonardo G, Andricopulo Adriano D

机构信息

Departamento de Físico-Química, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil.

Laboratório de Química Medicinal e Computacional, Centro de Pesquisa e Inovação em Biodiversidade e Fármacos, Instituto de Física de São Carlos, Universidade de São Paulo (USP), São Carlos, SP, Brazil.

出版信息

Methods Mol Biol. 2018;1762:31-50. doi: 10.1007/978-1-4939-7756-7_3.

Abstract

Drug discovery has evolved significantly over the past two decades. Progress in key areas such as molecular and structural biology has contributed to the elucidation of the three-dimensional structure and function of a wide range of biological molecules of therapeutic interest. In this context, the integration of experimental techniques, such as X-ray crystallography, and computational methods, such as molecular docking, has promoted the emergence of several areas in drug discovery, such as structure-based drug design (SBDD). SBDD strategies have been broadly used to identify, predict and optimize the activity of small molecules toward a molecular target and have contributed to major scientific breakthroughs in pharmaceutical R&D. This chapter outlines molecular docking and structure-based virtual screening (SBVS) protocols used to predict the interaction of small molecules with the phosphatidylinositol-bisphosphate-kinase PI3Kδ, which is a molecular target for hematological diseases. A detailed description of the molecular docking and SBVS procedures and an evaluation of the results are provided.

摘要

在过去二十年中,药物研发取得了显著进展。分子生物学和结构生物学等关键领域的进步有助于阐明一系列具有治疗意义的生物分子的三维结构和功能。在此背景下,诸如X射线晶体学等实验技术与诸如分子对接等计算方法的整合,推动了药物研发中多个领域的出现,例如基于结构的药物设计(SBDD)。SBDD策略已被广泛用于识别、预测和优化小分子对分子靶点的活性,并为制药研发中的重大科学突破做出了贡献。本章概述了用于预测小分子与磷脂酰肌醇 - 双磷酸激酶PI3Kδ相互作用的分子对接和基于结构的虚拟筛选(SBVS)方案,PI3Kδ是血液疾病的一个分子靶点。文中提供了分子对接和SBVS程序的详细描述以及结果评估。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验