Jacquemin Denis, Duchemin Ivan, Blase Xavier
Laboratoire CEISAM - UMR CNRS 6230, Université de Nantes , 2 Rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France.
Institut Universitaire de France , 1 rue Descartes, 75231 Paris Cedex 5, France.
J Phys Chem Lett. 2017 Apr 6;8(7):1524-1529. doi: 10.1021/acs.jpclett.7b00381. Epub 2017 Mar 21.
Developing ab initio approaches able to provide accurate excited-state energies at a reasonable computational cost is one of the biggest challenges in theoretical chemistry. In that framework, the Bethe-Salpeter equation approach, combined with the GW exchange-correlation self-energy, which maintains the same scaling with system size as TD-DFT, has recently been the focus of a rapidly increasing number of applications in molecular chemistry. Using a recently proposed set encompassing excitation energies of many kinds [J. Phys. Chem. Lett. 2016, 7, 586-591], we investigate here the performances of BSE/GW. We compare these results to CASPT2, EOM-CCSD, and TD-DFT data and show that BSE/GW provides an accuracy comparable to the two wave function methods. It is particularly remarkable that the BSE/GW is equally efficient for valence, Rydberg, and charge-transfer excitations. In contrast, it provides a poor description of triplet excited states, for which EOM-CCSD and CASPT2 clearly outperform BSE/GW. This contribution therefore supports the use of the Bethe-Salpeter approach for spin-conserving transitions.
开发能够以合理的计算成本提供精确激发态能量的从头算方法是理论化学中最大的挑战之一。在此框架下,结合GW交换关联自能的贝叶斯-萨尔皮特方程方法,其与系统大小的标度关系与含时密度泛函理论(TD-DFT)相同,最近已成为分子化学中越来越多应用的焦点。使用最近提出的一组包含多种激发能的数据[《物理化学快报》2016年,7卷,586 - 591页],我们在此研究贝叶斯-萨尔皮特方程/格林函数方法(BSE/GW)的性能。我们将这些结果与完全活化空间自洽场二阶微扰理论(CASPT2)、方程-of-motion耦合簇单双激发(EOM-CCSD)和TD-DFT数据进行比较,结果表明BSE/GW提供的精度与两种波函数方法相当。特别值得注意的是,BSE/GW对价态、里德堡态和电荷转移激发同样有效。相比之下,它对三重态激发态的描述较差,在这方面EOM-CCSD和CASPT2明显优于BSE/GW。因此,本研究支持将贝叶斯-萨尔皮特方法用于自旋守恒跃迁。