Suppr超能文献

结合局域轨道标度校正和贝特-萨尔皮特方程以获得精确的激发能。

Combining localized orbital scaling correction and Bethe-Salpeter equation for accurate excitation energies.

作者信息

Li Jiachen, Jin Ye, Su Neil Qiang, Yang Weitao

机构信息

Department of Chemistry, Duke University, Durham, North Carolina 27708, USA.

出版信息

J Chem Phys. 2022 Apr 21;156(15):154101. doi: 10.1063/5.0087498.

Abstract

We applied localized orbital scaling correction (LOSC) in Bethe-Salpeter equation (BSE) to predict accurate excitation energies for molecules. LOSC systematically eliminates the delocalization error in the density functional approximation and is capable of approximating quasiparticle (QP) energies with accuracy similar to or better than GW Green's function approach and with much less computational cost. The QP energies from LOSC, instead of commonly used GW and evGW, are directly used in BSE. We show that the BSE/LOSC approach greatly outperforms the commonly used BSE/GW approach for predicting excitations with different characters. For the calculations of Truhlar-Gagliardi test set containing valence, charge transfer, and Rydberg excitations, BSE/LOSC with the Tamm-Dancoff approximation provides a comparable accuracy to time-dependent density functional theory (TDDFT) and BSE/evGW. For the calculations of Stein CT test set and Rydberg excitations of atoms, BSE/LOSC considerably outperforms both BSE/GW and TDDFT approaches with a reduced starting point dependence. BSE/LOSC is, thus, a promising and efficient approach to calculate excitation energies for molecular systems.

摘要

我们在贝叶斯-萨尔皮特方程(BSE)中应用局域轨道标度校正(LOSC)来预测分子的精确激发能。LOSC系统地消除了密度泛函近似中的离域误差,并且能够以与GW格林函数方法相似或更好的精度逼近准粒子(QP)能量,同时计算成本要低得多。来自LOSC的QP能量,而非常用的GW和evGW,被直接用于BSE。我们表明,对于预测具有不同特征的激发,BSE/LOSC方法大大优于常用的BSE/GW方法。对于包含价态、电荷转移和里德堡激发的特鲁哈拉-加利亚迪测试集的计算,采用塔姆-丹科夫近似的BSE/LOSC提供了与含时密度泛函理论(TDDFT)和BSE/evGW相当的精度。对于斯坦因电荷转移测试集和原子的里德堡激发的计算,BSE/LOSC显著优于BSE/GW和TDDFT方法,且对起始点的依赖性降低。因此,BSE/LOSC是一种计算分子系统激发能的有前景且高效的方法。

相似文献

本文引用的文献

2
LibSC: Library for Scaling Correction Methods in Density Functional Theory.LibSC:密度泛函理论中缩放校正方法的库。
J Chem Theory Comput. 2022 Feb 8;18(2):840-850. doi: 10.1021/acs.jctc.1c01058. Epub 2022 Jan 21.
3
Scrutinizing GW-Based Methods Using the Hubbard Dimer.使用哈伯德二聚体审视基于GW的方法。
Front Chem. 2021 Oct 29;9:751054. doi: 10.3389/fchem.2021.751054. eCollection 2021.
7
The Bethe-Salpeter Equation Formalism: From Physics to Chemistry.贝塞耳-萨尔皮特方程形式理论:从物理到化学
J Phys Chem Lett. 2020 Sep 3;11(17):7371-7382. doi: 10.1021/acs.jpclett.0c01875. Epub 2020 Aug 24.
8
Robust Analytic-Continuation Approach to Many-Body Calculations.用于多体计算的稳健解析延拓方法
J Chem Theory Comput. 2020 Mar 10;16(3):1742-1756. doi: 10.1021/acs.jctc.9b01235. Epub 2020 Feb 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验