Department of Nuclear Medicine, Ghent University Hospital, Ghent, Belgium.
iMinds-IBiTech-MEDISIP, Department of Electronics and Information Systems, Ghent University, Ghent, Belgium.
Mol Imaging Biol. 2017 Dec;19(6):857-866. doi: 10.1007/s11307-017-1071-0.
In this study, the potential of semiquantitative and quantitative analysis of dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) was investigated to differentiate glioblastoma (GB) from radiation necrosis (RN) in rats.
F98 GB growth was seen on MRI 8-23 days post-inoculation (n = 15). RN lesions developed 6-8 months post-irradiation (n = 10). DCE-MRI was acquired using a fast low-angle shot (FLASH) sequence. Regions of interest (ROIs) encompassed peripheral contrast enhancement in GB (n = 15) and RN (n = 10) as well as central necrosis within these lesions (GB (n = 4), RN (n = 3)). Dynamic contrast-enhanced time series, obtained from the DCE-MRI data, were fitted to determine four function variables (amplitude A, offset from zero C, wash-in rate k, and wash-out rate D) as well as maximal intensity (Imax) and time to peak (TTP). Secondly, maps of semiquantitative and quantitative parameters (extended Tofts model) were created using Olea Sphere (). Semiquantitative DCE-MRI parameters included wash-in, wash-out, area under the curve (AUC), maximal intensity (Imax), and time to peak (TTP). Quantitative parameters included the rate constant plasma to extravascular-extracellular space (EES) (K ), the rate constant EES to plasma (K ), plasma volume (V ), and EES volume (V ). All (semi)quantitative parameters were compared between GB and RN using the Mann-Whitney U test. ROC analysis was performed.
Wash-in rate (k) and wash-out rate (D) were significantly higher in GB compared to RN using curve fitting (p = 0.016 and p = 0.014). TTP and TTP were significantly lower in GB compared to RN (p = 0.001 and p = 0.005, respectively). The highest sensitivity (87 %) and specificity (80 %) were obtained for TTP by applying a threshold of 581 s. K , K , and V were not significantly different between GB and RN. A trend towards higher V values was found in GB compared to RN, indicating angiogenesis in GB (p = 0.075).
Based on our results, in a rat model of GB and RN, wash-in rate, wash-out rate, and the time to peak extracted from DCE-MRI time series data may be useful to discriminate GB from RN.
本研究旨在通过半定量和定量分析动态对比增强(DCE)磁共振成像(MRI),来区分大鼠的胶质母细胞瘤(GB)和放射性坏死(RN)。
接种 F98 后 8-23 天可在 MRI 上观察到生长的 GB(n=15)。RN 病变在照射后 6-8 个月发展(n=10)。使用快速小角度激发(FLASH)序列采集 DCE-MRI。GB(n=15)和 RN(n=10)的外周对比增强区域和这些病变内的中央坏死(GB(n=4),RN(n=3))作为感兴趣区(ROI)。从 DCE-MRI 数据中获得的动态对比增强时间序列用于拟合以确定四个功能变量(幅度 A、从零点 C 的偏移、洗入率 k 和洗出率 D)以及最大强度(Imax)和达峰时间(TTP)。其次,使用 Olea Sphere()创建半定量和定量参数(扩展 Tofts 模型)图。半定量 DCE-MRI 参数包括洗入、洗出、曲线下面积(AUC)、最大强度(Imax)和达峰时间(TTP)。定量参数包括血浆至血管外-细胞外空间(EES)的速率常数(K )、EES 至血浆的速率常数(K )、血浆体积(V )和 EES 体积(V )。使用 Mann-Whitney U 检验比较所有(半)定量参数在 GB 和 RN 之间的差异。进行 ROC 分析。
使用曲线拟合,GB 的洗入率(k)和洗出率(D)明显高于 RN(p=0.016 和 p=0.014)。GB 的 TTP 和 TTP 明显低于 RN(p=0.001 和 p=0.005)。通过应用 581 s 的阈值,TTP 获得了最高的灵敏度(87%)和特异性(80%)。GB 和 RN 之间 K 、K 和 V 没有显著差异。与 RN 相比,GB 中 V 值较高,提示存在血管生成(p=0.075)。
基于我们的结果,在大鼠的 GB 和 RN 模型中,从 DCE-MRI 时间序列数据中提取的洗入率、洗出率和达峰时间可能有助于区分 GB 和 RN。