Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA.
Center for the Environmental Implications of Nanotechnology (CEINT), Duke University, Durham, North Carolina, USA.
Sci Rep. 2017 Mar 17;7:44308. doi: 10.1038/srep44308.
In contrast to many nanotoxicity studies where nanoparticles (NPs) are observed to be toxic or reduce viable cells in a population of bacteria, we observed that increasing concentration of TiO NPs increased the cell survival of Bacillus subtilis in autolysis-inducing buffer by 0.5 to 5 orders of magnitude over an 8 hour exposure. Molecular investigations revealed that TiO NPs prevent or delay cell autolysis, an important survival and growth-regulating process in bacterial populations. Overall, the results suggest two potential mechanisms for the disruption of autolysis by TiO NPs in a concentration dependent manner: (i) directly, through TiO NP deposition on the cell wall, delaying the collapse of the protonmotive-force and preventing the onset of autolysis; and (ii) indirectly, through adsorption of autolysins on TiO NP, limiting the activity of released autolysins and preventing further lytic activity. Enhanced darkfield microscopy coupled to hyperspectral analysis was used to map TiO deposition on B. subtilis cell walls and released enzymes, supporting both mechanisms of autolysis interference. The disruption of autolysis in B. subtilis cultures by TiO NPs suggests the mechanisms and kinetics of cell death may be influenced by nano-scale metal oxide materials, which are abundant in natural systems.
与许多纳米毒性研究相反,这些研究观察到纳米颗粒(NPs)在细菌群体中具有毒性或降低存活细胞,我们观察到 TiO NPs 的浓度增加会导致枯草芽孢杆菌在自溶诱导缓冲液中的细胞存活率在 8 小时暴露时间内增加 0.5 到 5 个数量级。分子研究表明,TiO NPs 可防止或延迟细胞自溶,这是细菌群体中重要的存活和生长调节过程。总的来说,这些结果表明 TiO NPs 以浓度依赖的方式破坏自溶的两种潜在机制:(i)直接通过 TiO NP 在细胞壁上的沉积,延迟质子动力势的崩溃并防止自溶的发生;(ii)间接通过吸附在 TiO NP 上的自溶素,限制释放的自溶素的活性并防止进一步的裂解活性。增强暗场显微镜结合高光谱分析用于绘制 TiO 在枯草芽孢杆菌细胞壁上的沉积和释放的酶,支持自溶干扰的两种机制。TiO NPs 对枯草芽孢杆菌培养物中自溶的破坏表明,细胞死亡的机制和动力学可能受到纳米级金属氧化物材料的影响,这些材料在自然系统中很丰富。