Ströker Philipp, Meier Karsten
Institut für Thermodynamik, Helmut-Schmidt-Universität/Universität der Bundeswehr Hamburg, Holstenhofweg 85, 22043 Hamburg, Germany.
Phys Rev E. 2021 Jul;104(1-1):014117. doi: 10.1103/PhysRevE.104.014117.
The methodology developed by Lustig for calculating thermodynamic properties in the microcanonical and canonical ensembles [J. Chem. Phys. 100, 3048 (1994)JCPSA60021-960610.1063/1.466446; Mol. Phys. 110, 3041 (2012)MOPHAM0026-897610.1080/00268976.2012.695032] is applied to derive rigorous expressions for thermodynamic properties of fluids in the grand canonical ensemble. All properties are expressed by phase-space functions, which are related to derivatives of the grand canonical potential with respect to the three independent variables of the ensemble: temperature, volume, and chemical potential. The phase-space functions contain ensemble averages of combinations of the number of particles, potential energy, and derivatives of the potential energy with respect to volume. In addition, expressions for the phase-space functions for temperature-dependent potentials are provided, which are required to account for quantum corrections semiclassically in classical simulations. Using the Lennard-Jones model fluid as a test case, the derived expressions are validated by Monte Carlo simulations. In contrast to expressions for the thermal expansion coefficient, the isothermal compressibility, and the thermal pressure coefficient from the literature, our expressions yield more reliable results for these properties, which agree well with a recent accurate equation of state for the Lennard-Jones model fluid. Moreover, they become equivalent to the corresponding expressions in the canonical ensemble in the thermodynamic limit.
卢斯蒂格开发的用于计算微正则系综和正则系综中热力学性质的方法[《化学物理杂志》100, 3048 (1994)JCPSA60021 - 960610.1063/1.466446;《分子物理学》110, 3041 (2012)MOPHAM0026 - 897610.1080/00268976.2012.695032]被应用于推导巨正则系综中流体热力学性质的严格表达式。所有性质均由相空间函数表示,这些函数与巨正则势相对于系综的三个独立变量:温度、体积和化学势的导数相关。相空间函数包含粒子数、势能以及势能相对于体积的导数的组合的系综平均值。此外,还提供了与温度相关势的相空间函数的表达式,这在经典模拟中用于半经典地考虑量子修正。以 Lennard - Jones 模型流体作为测试案例,通过蒙特卡罗模拟验证了所推导的表达式。与文献中热膨胀系数、等温压缩率和热压力系数的表达式不同,我们的表达式对于这些性质给出了更可靠的结果,与最近的 Lennard - Jones 模型流体的精确状态方程吻合良好。而且,在热力学极限下它们与正则系综中的相应表达式等效。