Institute of Physics, University of Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg, Germany and Institut Charles Sadron, Université de Strasbourg & CNRS, 23 rue du Loess, 67034 Strasbourg Cedex, France.
Institut Charles Sadron, Université de Strasbourg & CNRS, 23 rue du Loess, 67034 Strasbourg Cedex, France.
Soft Matter. 2017 Mar 29;13(13):2499-2512. doi: 10.1039/c7sm00243b.
Assuming Gaussian chain statistics along the chain contour, we generate by means of a proper fractal generator hyperbranched polymer trees which are marginally compact. Static and dynamical properties, such as the radial intrachain pair density distribution ρ(r) or the shear-stress relaxation modulus G(t), are investigated theoretically and by means of computer simulations. We emphasize that albeit the self-contact density diverges logarithmically with the total mass N, this effect becomes rapidly irrelevant with increasing spacer length S. In addition to this it is seen that the standard Rouse analysis must necessarily become inappropriate for compact objects for which the relaxation time τ of mode p must scale as τ ∼ (N/p) rather than the usual square power law for linear chains.
假设链轮廓上的高斯链统计,我们通过适当的分形生成器生成支化聚合物树,这些聚合物树是边缘紧凑的。静态和动态性质,如径向链内对密度分布 ρ(r)或剪切应力松弛模量 G(t),通过理论和计算机模拟进行研究。我们强调,尽管自接触密度随总质量 N 对数发散,但随着间隔长度 S 的增加,这种效应变得迅速无关紧要。此外,我们还看到,标准的 Rouse 分析对于紧凑物体必然变得不合适,对于这些紧凑物体,模式 p 的松弛时间 τ 必须按 τ∼(N/p)而不是线性链的通常平方幂律进行缩放。