Emmert Werner
Zoologisches Institut I der Universität Würzburg, Deutschland.
Wilhelm Roux Arch Entwickl Mech Org. 1972 Jun;169(2):87-133. doi: 10.1007/BF00649888.
The differentiation of abdominal imaginal discs of matureCalliphora erythrocephala larvae has been studied by thermocautery and extirpation of the discs, and by implanting them into larval hosts of the same age. The experiments give information on (a) the morphology of the imaginal abdomen, and (b) the "regulative activitybetween imaginal discs". 1. Within each of the first to seventh larval abdominal segments, we identified two pairs ofabdominal discs, a dorsal and a ventral one (Fig. 6). Besides, the terminal part of the abdomen holds the paired lateral genital discs and the unpaired (median) genital disc, which are of different shape in both sexes (Fig. 9, 10). 2. The imaginal discs of a specific larval segment differentiate only into the integument of the corresponding imaginal segment. The dorsal pair of discs gives rise to the dorsal region (≈tergum, dorsum), the ventral pair to the ventral region of the imaginal segment (≈sternum); the left and the right discs of a larval segment develop into the corresponding halves of the segment in the adult. 3. Thelateral genital discs constitute the imaginal discs of the eighth segment, while thegenital disc includes the imaginal cells of the fused segments 9-11 (Fig. 30). 4. Our experimental results confirm thenumbering of segments in the imaginal abdomen, as proposed by Graham-Smith (1938), Crampton (1942), Hennig (1958), and Salzer (1968). 5. The large tergites of the imaginalpreabdomen consist of an area dorsal to the spiracles, arising from the dorsal abdominal discs, and of parts lying ventral to the spiracles. These ventral parts of the tergite as well as the "pleural membranes" and the sternite originate from the ventral discs (Fig. 31). 6. The small first dorsal plate of themale postabdomen proves to betergite 6. The sclerite, bordering the genital pouch ventrally, belongs to two segments; it should be termedsternite 6+7. The large sclerite, called syntergum 7+8 by Salzer (1968), is formed by several pairs of discs: the left ventral abdominal disc 6, the dorsal and ventral discs 7, and the lateral genital discs (Fig. 31). Thus, we term it thetergosternite 7+8. 7. In the male only the last segments of the postabdomen participate in therotation during metamorphosis: The eighth segment is rotated through 180° (=inversion); the hypopygium (=segments 9-11) is circumverted, i.e. twisted through 360° (Fig. 31). Thus,Calliphora has no "postabdomen circumversum" as Salzer (1968) assumed, but merely a "hypopygium circumversum". 8. Our results (Fig. 32) support the current morphological interpretation of thefemale postabdomen or ovipositor, as proposed by Crampton (1942) and Hennig (1958). 9. Theinternal genitalia of the male (without testes) originate from the genital disc. On the contrary, the female internal genitalia (without ovaries) develop from the lateral genital discs (oviduct, uterus, vagina, spermathecae) and the genital disc (parovaria). A comparison of the developmental capacities of theDrosophila genital disc with those of the lateral and median genital discs ofCalliphora shows that in the female ofDrosophila the equivalents of the lateral genital discs have been incorporated into the genital disc (Fig. 30). 10. Afterelimination of any one of the abdominal or lateral genital discs from the mature larva, the complementary disc of the opposite side gives rise to more than accords to its prospective significance (but see the results of Zalokar, 1943, and Murphy, 1967, on cephalic and thoracic discs inDrosophila). Our data on lateral genital discs do not support the view that the reported increased differentiation is due to a "regulation between discs of a single bicentric field" (Pantelouris and Waddington, 1955). Our data may be explained more easily if we assume the existence of an inhibitory effectin situ between the discs of one pair, which is abolished after elimination of the partner (cf. chapter 6.3.).
通过对红头丽蝇成熟幼虫腹部成虫盘进行热烧灼、切除以及将其植入同龄幼虫宿主体内等方法,对腹部成虫盘的分化进行了研究。这些实验提供了关于(a)成虫腹部的形态学信息,以及(b)“成虫盘之间的调节活性”的信息。1. 在幼虫的第一至第七腹节中,我们识别出两对腹部成虫盘,一对位于背侧,一对位于腹侧(图6)。此外,腹部末端有一对侧生殖器成虫盘和一个不成对的(中位)生殖器成虫盘,这两个盘在两性中形状不同(图9, 10)。2. 特定幼虫节段的成虫盘仅分化为相应成虫节段的体壁。背侧的一对成虫盘发育为成虫节段的背侧区域(≈背板,背部),腹侧的一对成虫盘发育为成虫节段的腹侧区域(≈腹板);幼虫节段的左右成虫盘在成虫中发育为该节段的相应两半。3. 侧生殖器成虫盘构成第八节段的成虫盘,而生殖器成虫盘包含融合的第9 - 11节段的成虫细胞(图30)。4. 我们的实验结果证实了格雷厄姆 - 史密斯(1938年)、克兰普顿(1942年)、亨尼希(1958年)和萨尔泽(1968年)所提出的成虫腹部节段编号。5. 成虫前腹部的大背板由气门上方的区域组成,该区域源自腹部背侧成虫盘,以及气门下方的部分。背板的这些腹侧部分以及“胸膜膜”和腹板源自腹侧成虫盘(图31)。6. 雄性后腹部的小第一背板被证明是第6背板。腹侧与生殖囊相邻的骨片属于两个节段;应称为第6 + 7腹板。萨尔泽(1968年)称为第7 + 8联合背板的大骨片由几对成虫盘形成:左腹侧腹部第6成虫盘、第7背侧和腹侧成虫盘以及侧生殖器成虫盘(图3l)。因此,我们将其称为第7 + 8背腹板。7. 在雄性中,只有后腹部的最后节段在变态过程中参与旋转:第八节段旋转180°(=反转);尾节(=第9 - 11节段)发生环转,即扭转了360°(图31)。因此,丽蝇没有如萨尔泽(1968年)所假设的“后腹部环转”,而只有“尾节环转”。8. 我们的结果(图32)支持了克兰普顿(19)和亨尼希(1958年)对雌性后腹部或产卵器的当前形态学解释。9. 雄性的内生殖器(不包括睾丸)源自生殖器成虫盘。相反,雌性的内生殖器(不包括卵巢)由侧生殖器成虫盘(输卵管、子宫、阴道、受精囊)和生殖器成虫盘(卵巢旁体)发育而来。将果蝇生殖器成虫盘与丽蝇侧生殖器和中位生殖器成虫盘的发育能力进行比较表明,在果蝇雌性中,侧生殖器成虫盘的对应部分已并入生殖器成虫盘(图30)。10. 从成熟幼虫中切除任何一个腹部或侧生殖器成虫盘后,对侧的互补成虫盘产生的结构超出了其预期的意义(但见扎洛卡尔1943年和墨菲1967年关于果蝇头部和胸部成虫盘的结果)。我们关于侧生殖器成虫盘的数据不支持这样的观点,即所报道的分化增加是由于“单个双中心场的成虫盘之间的调节”(潘特洛里斯和沃丁顿,1955年)。如果我们假设一对成虫盘之间存在原位抑制作用,并且在切除其对应盘后这种抑制作用被消除,那么我们的数据可能更容易解释(参见第6.3章)。