Suppr超能文献

二氧化碳的可逆加氢制甲酸和甲醇:路易斯酸增强的贱金属催化剂。

Reversible Hydrogenation of Carbon Dioxide to Formic Acid and Methanol: Lewis Acid Enhancement of Base Metal Catalysts.

机构信息

The Department of Chemistry, University of Missouri , Columbia, Missouri 65211, United States.

The Department of Chemistry, Yale University , P.O. Box 208107, New Haven, Connecticut 06520, United States.

出版信息

Acc Chem Res. 2017 Apr 18;50(4):1049-1058. doi: 10.1021/acs.accounts.7b00039. Epub 2017 Mar 17.

Abstract

New and sustainable energy vectors are required as a consequence of the environmental issues associated with the continued use of fossil fuels. H is a potential clean energy source, but as a result of problems associated with its storage and transport as a gas, chemical H storage (CHS), which involves the dehydrogenation of small molecules, is an attractive alternative. In principle, formic acid (FA, 4.4 wt % H) and methanol (MeOH, 12.6 wt % H) can be obtained renewably and are excellent prospective liquid CHS materials. In addition, MeOH has considerable potential both as a direct replacement for gasoline and as a fuel cell input. The current commercial syntheses of FA and MeOH, however, use nonrenewable feedstocks and will not facilitate the use of these molecules for CHS. An appealing option for the sustainable synthesis of both FA and MeOH, which could be implemented on a large scale, is the direct metal catalyzed hydrogenation of CO. Furthermore, given that CO is a readily available, nontoxic and inexpensive source of carbon, it is expected that there will be economic and environmental benefits from using CO as a feedstock. One strategy to facilitate both the dehydrogenation of FA and MeOH and the hydrogenation of CO and H to FA and MeOH is to utilize a homogeneous transition metal catalyst. In particular, the development of catalysts based on first row transition metals, which are cheaper, and more abundant than their precious metal counterparts, is desirable. In this Account, we describe recent advances in the development of iron and cobalt systems for the hydrogenation of CO to FA and MeOH and the dehydrogenation of FA and MeOH and provide a brief comparison between precious metal and base metal systems. We highlight the different ligands that have been used to stabilize first row transition metal catalysts and discuss the use of additives to promote catalytic activity. In particular, the Account focuses on the crucial role that alkali metal Lewis acid cocatalysts can play in promoting increased activity and catalyst stability for first row transition metal systems. We relate these effects to the nature of the elementary steps in the catalytic cycle and describe how the Lewis acids stabilize the crucial transition states. For all four transformations, we discuss in detail the currently proposed catalytic pathways, and throughout the Account we identify mechanistic similarities among catalysts for the four processes. The limitations of current catalytic systems are detailed, and suggestions are provided on the improvements that are likely required to develop catalysts that are more stable, active, and practical.

摘要

由于与继续使用化石燃料相关的环境问题,需要新的可持续能源载体。H 是一种有潜力的清洁能源,但由于作为气体储存和运输的问题,化学 H 储存(CHS),涉及小分子的脱氢,是一种有吸引力的替代方法。原则上,可以可再生地获得甲酸(FA,4.4wt%H)和甲醇(MeOH,12.6wt%H),并且是极好的潜在液体 CHS 材料。此外,MeOH 作为汽油的直接替代品以及燃料电池的输入都具有很大的潜力。然而,当前 FA 和 MeOH 的商业合成使用不可再生原料,并且不会促进这些分子用于 CHS。FA 和 MeOH 的可持续合成的一个有吸引力的选择,其可以大规模实施,是 CO 的直接金属催化氢化。此外,鉴于 CO 是一种易得,无毒且廉价的碳源,预计使用 CO 作为原料将具有经济和环境效益。促进 FA 和 MeOH 的脱氢以及 CO 和 H 向 FA 和 MeOH 的氢化的一种策略是利用均相过渡金属催化剂。特别是,开发基于第一行过渡金属的催化剂是可取的,这些催化剂比其贵金属对应物更便宜且更丰富。在本说明中,我们描述了用于 CO 氢化至 FA 和 MeOH 以及 FA 和 MeOH 脱氢的铁和钴体系的最新进展,并对贵金属和基础金属体系进行了简要比较。我们强调了已用于稳定第一行过渡金属催化剂的不同配体,并讨论了使用添加剂来促进催化活性。特别是,该说明集中于碱金属路易斯酸助催化剂在促进第一行过渡金属体系的增加的活性和催化剂稳定性方面可以发挥的关键作用。我们将这些效果与催化循环中的基本步骤的性质相关联,并描述路易斯酸如何稳定关键的过渡态。对于所有四个转化,我们详细讨论了目前提出的催化途径,并且在整个说明中,我们确定了四个过程的催化剂之间的机制相似性。详细说明了当前催化体系的局限性,并就开发更稳定,更活跃和更实用的催化剂所需的改进提出了建议。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验