Suppr超能文献

两亲性分子:从金属有机好奇心到无金属催化剂。

Ambiphilic Molecules: From Organometallic Curiosity to Metal-Free Catalysts.

机构信息

Département de Chimie, Centre de Catalyse et Chimie Verte, Université Laval , 1045 Avenue de la Médecine, Québec, Québec, Canada , G1V 0A6.

出版信息

Acc Chem Res. 2018 Feb 20;51(2):454-464. doi: 10.1021/acs.accounts.7b00514. Epub 2018 Jan 8.

Abstract

Ambiphilic molecules were first used as functional ligands for transition elements, which could enable intriguing organometallic transformations. In the past decade, these intramolecular Lewis pairs, first considered organometallic curiosities, have become staples in organometallic chemistry and catalysis, acting as Z ligands, activating inert molecules using the concept of frustrated Lewis pair (FLP) chemistry, and acting as metal-free catalysts. In this Account, we detail our contribution to this blossoming field of research, focusing on the use of ambiphilic molecules as metal-free catalysts for CO reduction and C-H borylation reactions. A major emphasis is put on the mechanistic investigations we carried out using reactivity studies and theoretical tools, which helped us steer our research from stoichiometric transformations to highly active catalytic processes. We first report the interaction of aluminum-phosphine ambiphilic molecules with carbon dioxide. Although these Lewis pairs can bind CO, a study of the deactivation process in the presence of CO and hydroboranes led us to discover that simple phosphinoborane molecules could act as active precatalysts for the hydroboration of carbon dioxide into methanol precursors. In these systems, the Lewis basic sites interact with the reducing agents rather than with the electrophilic carbon of CO, increasing the nucleophilicity of hydroboranes. Simultaneously, the weak Lewis acids stabilize the oxygen of the gas molecule in the transition state, leading to high reaction rates. Replacing the phosphine by an amine leads to a system enabling CO hydrogenation, albeit only in stoichiometric transformations. Investigation of the protodeborylation deactivation of aminoboranes led us to develop metal-free catalysts for the C-H borylation of heteroarenes. By protecting the Lewis acid sites of these catalysts using fluoride, we were able to synthesize practical, air-stable precatalysts allowing the convenient synthesis of heteroarylboronic esters on a multigram scale. Contrary to general perception of FLP chemistry, we also demonstrated that a significant increase in activity could be obtained by reducing the steric bulk around the active site. These smaller systems exist as stable dimers and are more energetically costly to dissociate into active FLPs, but the approach of the substrate and the C-H activation step are significantly favored compared to the bulkier analogues. An in-depth study of the stability and reactivity of these aminoborane molecules also allowed us to develop a metal-free catalytic S-H bond borylation system, and to report stoichiometric and spontaneous B-B bond formation and Csp-H bond activation processes, highlighting the importance of H release as a thermodynamic driving force in these FLP transformations.

摘要

两亲分子最初被用作过渡金属的功能配体,这可以使有趣的有机金属转化成为可能。在过去的十年中,这些最初被认为是有机金属奇思妙想的分子内路易斯对已成为有机金属化学和催化的基础,它们充当 Z 配体,使用受阻路易斯对(FLP)化学的概念激活惰性分子,并充当无金属催化剂。在本专题介绍中,我们详细介绍了我们在这个蓬勃发展的研究领域中的贡献,重点介绍了将两亲分子用作 CO 还原和 C-H 硼化反应的无金属催化剂。主要重点是我们使用反应性研究和理论工具进行的机理研究,这些研究帮助我们将研究从化学计量转化为高活性催化过程。我们首先报告了铝-膦两亲分子与二氧化碳的相互作用。尽管这些路易斯对可以与 CO 结合,但对存在 CO 和硼烷时失活过程的研究使我们发现,简单的膦硼烷分子可以充当将二氧化碳硼氢化生成甲醇前体的有效前催化剂。在这些体系中,路易斯碱性位点与还原剂相互作用,而不是与 CO 的亲电碳相互作用,从而增加了硼烷的亲核性。同时,弱路易斯酸在过渡态中稳定气体分子的氧,从而导致高反应速率。用胺代替膦会导致能够进行 CO 氢化的体系,尽管仅在化学计量转化中。对氨基硼烷的原脱硼化失活的研究使我们能够开发用于杂芳环 C-H 硼化的无金属催化剂。通过使用氟化物保护这些催化剂的路易斯酸位点,我们能够合成实用的,稳定的前催化剂,从而可以在多克规模上方便地合成杂芳基硼酸酯。与 FLP 化学的普遍看法相反,我们还证明,通过减小活性位点周围的空间位阻,可以获得显著的活性提高。这些较小的体系以稳定的二聚体存在,并且解离成活性 FLP 的能量成本更高,但是与较大的类似物相比,底物的接近和 C-H 活化步骤更为有利。对这些氨基硼烷分子的稳定性和反应性的深入研究还使我们能够开发无金属催化的 S-H 键硼化体系,并报告化学计量和自发的 B-B 键形成和 Csp-H 键活化过程,这突显了在这些 FLP 转化中 H 释放作为热力学驱动力的重要性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验