Popov Tzvetan, Kastner Sabine, Jensen Ole
Department of Psychology, University of Konstanz, Konstanz 78462, Germany.
Princeton Neuroscience Institute and.
J Neurosci. 2017 Apr 12;37(15):4117-4127. doi: 10.1523/JNEUROSCI.3015-16.2017. Epub 2017 Mar 17.
Recent findings in the visual system of nonhuman primates have demonstrated an important role of gamma-band activity (40-100 Hz) in the feedforward flow of sensory information, whereas feedback control appears to be established dynamically by oscillations in the alpha (8-13 Hz) and beta (13-18 Hz) bands (van Kerkoerle et al., 2014; Bastos et al., 2015). It is not clear, however, how alpha oscillations are controlled and how they interact with the flow of visual information mediated by gamma-band activity. Using noninvasive human MEG recordings in subjects performing a visuospatial attention task, we show that fluctuations in alpha power during a delay period in a spatial attention task preceded subsequent stimulus-driven gamma-band activity. Importantly, these interactions correlated with behavioral performance. Using Granger analysis, we further show that the right frontal-eye field (rFEF) exerted feedback control of the visual alpha oscillations. Our findings suggest that alpha oscillations controlled by the FEF route cortical information flow by modulating gamma-band activity. Visual perception relies on a feedforward flow of information from sensory regions, which is modulated by a feedback drive. We have identified the neuronal dynamics supporting integration of the feedforward and feedback information. Alpha oscillations in early visual regions reflect feedback control when spatial attention is allocated and this control is exercised by the right frontal eye field. Importantly, the alpha-band activity predicted both performance and activity in the gamma band. In particular, gamma activity was modulated by the phase of the alpha oscillations. These findings provide novel insight into how the brain operates as a network and suggest that the integration of feedforward and feedback information is implemented by cross-frequency interactions between slow and fast neuronal oscillations.
非人灵长类动物视觉系统的最新研究结果表明,伽马波段活动(40-100赫兹)在感觉信息的前馈信息流中发挥着重要作用,而反馈控制似乎是由阿尔法波段(8-13赫兹)和贝塔波段(13-18赫兹)的振荡动态建立的(范·克尔科勒等人,2014年;巴斯托斯等人,2015年)。然而,目前尚不清楚阿尔法振荡是如何被控制的,以及它们如何与由伽马波段活动介导的视觉信息流相互作用。通过对执行视觉空间注意力任务的受试者进行无创性人类脑磁图记录,我们发现,在空间注意力任务的延迟期内,阿尔法功率的波动先于随后的刺激驱动的伽马波段活动。重要的是,这些相互作用与行为表现相关。使用格兰杰分析,我们进一步表明,右侧额叶眼区(rFEF)对视觉阿尔法振荡施加反馈控制。我们的研究结果表明,由额叶眼区控制的阿尔法振荡通过调节伽马波段活动来引导皮层信息流。视觉感知依赖于来自感觉区域的前馈信息流,该信息流由反馈驱动进行调节。我们已经确定了支持前馈和反馈信息整合的神经元动力学。当分配空间注意力时,早期视觉区域的阿尔法振荡反映了反馈控制,并且这种控制是由右侧额叶眼区行使的。重要的是,阿尔法波段活动预测了伽马波段的表现和活动。特别是,伽马活动受阿尔法振荡相位的调节。这些发现为大脑如何作为一个网络运作提供了新的见解,并表明前馈和反馈信息的整合是通过慢神经元振荡和快神经元振荡之间的跨频率相互作用来实现的。