Cheng Yu-Po, Nordin Andrew D
Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX 77840, USA.
Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA.
Brain Sci. 2025 May 21;15(5):531. doi: 10.3390/brainsci15050531.
: Visuomotor integration relies on synchronized proprioceptive and visual feedback during visually guided locomotion. How the human brain processes unimodal or asynchronous multimodal inputs during locomotion is unclear. : Using high-density mobile electroencephalography (EEG) and motion capture in a virtual reality environment, we investigated electrocortical responses during altered treadmill gait speeds (0.5 and 1.5 m/s) and visual flow speeds (0.5×, 1×, and 1.5× gait speed) among 13 healthy human subjects. Experimental conditions included passive viewing of a moving virtual environment, walking in a stationary virtual environment, and walking in a moving environment with synchronous and asynchronous visual flow. : At faster gait speed, we identified reduced premotor, sensorimotor, and visual electrocortical beta-band spectral power (13-30 Hz) and greater premotor cortex theta power (4-8 Hz). At faster visual flow speeds, we identified reduced sensorimotor electrocortical beta-band spectral power, reduced alpha (8-13 Hz) and beta power, and greater gamma-band power (30-50 Hz) from the visual cortex. During visual flow and gait speed mismatches, sensorimotor and parietal alpha- and beta-band electrocortical spectral power decreased at faster gait speed. During treadmill walking at 1.5 m/s, parietal electrocortical spectral power increased when visual flow exceeded gait speed. : Electrical brain dynamics during human gait identified distinct neural circuits for integrating kinesthetic and visual information during visuomotor conflicts, gated by the parietal cortex.
视觉运动整合依赖于视觉引导运动过程中本体感觉和视觉反馈的同步。目前尚不清楚人类大脑在运动过程中如何处理单峰或异步多峰输入。
利用虚拟现实环境中的高密度移动脑电图(EEG)和动作捕捉技术,我们研究了13名健康人类受试者在跑步机步态速度改变(0.5和1.5米/秒)以及视觉流速度(0.5倍、1倍和1.5倍步态速度)时的皮层电反应。实验条件包括被动观看移动的虚拟环境、在静止的虚拟环境中行走以及在具有同步和异步视觉流的移动环境中行走。
在较快的步态速度下,我们发现运动前区、感觉运动区和视觉皮层的β波段频谱功率(13 - 30赫兹)降低,运动前区皮层的θ功率(4 - 8赫兹)增加。在较快的视觉流速度下,我们发现感觉运动皮层的β波段频谱功率降低,视觉皮层的α(8 - 13赫兹)和β功率降低,γ波段功率(30 - 50赫兹)增加。在视觉流和步态速度不匹配时,在较快的步态速度下,感觉运动区和顶叶的α和β波段皮层频谱功率降低。在以1.5米/秒的速度在跑步机上行走时,当视觉流超过步态速度时,顶叶皮层频谱功率增加。
人类步态期间的脑电动力学确定了在视觉运动冲突期间整合动觉和视觉信息的不同神经回路,由顶叶皮层控制。