Weber Frauke, Brust Peter, Laurini Erik, Pricl Sabrina, Wünsch Bernhard
Institute of Pharmaceutical and Medicinal Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstraße 48, D-48149, Münster, Germany.
Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Permoserstraße 15, D-04318, Leipzig, Germany.
Adv Exp Med Biol. 2017;964:31-48. doi: 10.1007/978-3-319-50174-1_4.
At first the role of σ receptors in various neurological, psychiatric and neurodegenerative disorders is discussed. In the second part, the principle of positron emission tomography (PET ) is described and the known fluorinated PET tracers for labeling of σ receptors are presented. The third part focuses on fluoroalkyl substituted spirocyclic PET tracers, which represent the most promising class of fluorinated PET tracers reported so far. The homologous fluoroalkyl derivatives 12-15 show high σ affinity (K = 0.59-1.4 nM) and high selectivity over the σ subtype (408-1331-fold). The enantiomers of the fluoroethyl derivative fluspidine 13 were prepared and pharmacologically characterized. Whereas the (S)-configured enantiomer (S)-13 (K = 2.3 nM) is 4-fold less active than the (R)-enantiomer (R)-13 (K = 0.57 nM), (S)-13 is metabolically more stable. The interactions of (S)-13 and (R)-13 with the σ receptor were analyzed at the molecular level using the 3D homology model. In an automated radiosynthesis F-13 and F-13 were prepared by nucleophilic substitution of the tosylates (S)-17 and (R)-17 with K[F]F in high radiochemical yield, high radiochemical purity and short reaction time. Application of both enantiomers F-13 and F-13 to mice and piglets led to fast uptake into the brain, but F-13 did not show washout from the brain indicating a quasi-irreversible binding. Both radiotracers F-13 and F-13 were able to label regions in the mouse and piglet brain with high σ receptor density. The specific binding of the enantiomeric tracers F-13 and F-13 could be replaced by the selective σ ligand SA4503.
首先讨论了σ受体在各种神经、精神和神经退行性疾病中的作用。第二部分描述了正电子发射断层扫描(PET)的原理,并介绍了用于标记σ受体的已知氟化PET示踪剂。第三部分重点介绍氟代烷基取代的螺环PET示踪剂,它们是迄今为止报道的最有前景的一类氟化PET示踪剂。同源氟代烷基衍生物12 - 15显示出高σ亲和力(K = 0.59 - 1.4 nM)以及对σ亚型的高选择性(408 - 1331倍)。制备了氟乙衍生物氟司必林13的对映体并进行了药理学表征。虽然(S)构型的对映体(S)-13(K = 2.3 nM)的活性比(R)对映体(R)-13(K = 0.57 nM)低4倍,但(S)-13在代谢上更稳定。使用三维同源模型在分子水平上分析了(S)-13和(R)-13与σ受体的相互作用。通过用K[F]F对甲苯磺酸盐(S)-17和(R)-17进行亲核取代,以高放射化学产率、高放射化学纯度和短反应时间自动合成了F-13和F-13。将两种对映体F-13和F-13应用于小鼠和仔猪后发现它们能快速进入大脑,但F-13未显示出从大脑中清除,表明其具有准不可逆结合。两种放射性示踪剂F-13和F-13都能够标记小鼠和仔猪大脑中具有高σ受体密度的区域。对映体示踪剂F-13和F-13的特异性结合可被选择性σ配体SA4503取代。