Suppr超能文献

用于低秩矩阵估计的非凸优化框架。

A Nonconvex Optimization Framework for Low Rank Matrix Estimation.

作者信息

Zhao Tuo, Wang Zhaoran, Liu Han

机构信息

Johns Hopkins University.

Princeton University.

出版信息

Adv Neural Inf Process Syst. 2015;28:559-567.

Abstract

We study the estimation of low rank matrices via nonconvex optimization. Compared with convex relaxation, nonconvex optimization exhibits superior empirical performance for large scale instances of low rank matrix estimation. However, the understanding of its theoretical guarantees are limited. In this paper, we define the notion of projected oracle divergence based on which we establish sufficient conditions for the success of nonconvex optimization. We illustrate the consequences of this general framework for matrix sensing. In particular, we prove that a broad class of nonconvex optimization algorithms, including alternating minimization and gradient-type methods, geometrically converge to the global optimum and exactly recover the true low rank matrices under standard conditions.

摘要

我们研究通过非凸优化来估计低秩矩阵。与凸松弛相比,非凸优化在大规模低秩矩阵估计实例中展现出卓越的经验性能。然而,对其理论保障的理解却很有限。在本文中,我们定义了投影预言机散度的概念,并在此基础上建立了非凸优化成功的充分条件。我们阐述了这个通用框架对矩阵感知的影响。特别地,我们证明了一大类非凸优化算法,包括交替最小化和梯度型方法,在标准条件下几何收敛到全局最优解并能精确恢复真实的低秩矩阵。

相似文献

3
Efficient Recovery of Low-Rank Matrix via Double Nonconvex Nonsmooth Rank Minimization.通过双非凸非光滑秩最小化实现低秩矩阵的高效恢复
IEEE Trans Neural Netw Learn Syst. 2019 Oct;30(10):2916-2925. doi: 10.1109/TNNLS.2019.2900572. Epub 2019 Mar 18.
4
Low-rank structure learning via nonconvex heuristic recovery.基于非凸启发式恢复的低秩结构学习。
IEEE Trans Neural Netw Learn Syst. 2013 Mar;24(3):383-96. doi: 10.1109/TNNLS.2012.2235082.
8
Nonconvex Nonsmooth Low Rank Minimization via Iteratively Reweighted Nuclear Norm.基于迭代加权核范数的非凸非光滑低秩最小化
IEEE Trans Image Process. 2016 Feb;25(2):829-39. doi: 10.1109/TIP.2015.2511584. Epub 2015 Dec 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验