Zhao Tuo, Wang Zhaoran, Liu Han
Johns Hopkins University.
Princeton University.
Adv Neural Inf Process Syst. 2015;28:559-567.
We study the estimation of low rank matrices via nonconvex optimization. Compared with convex relaxation, nonconvex optimization exhibits superior empirical performance for large scale instances of low rank matrix estimation. However, the understanding of its theoretical guarantees are limited. In this paper, we define the notion of projected oracle divergence based on which we establish sufficient conditions for the success of nonconvex optimization. We illustrate the consequences of this general framework for matrix sensing. In particular, we prove that a broad class of nonconvex optimization algorithms, including alternating minimization and gradient-type methods, geometrically converge to the global optimum and exactly recover the true low rank matrices under standard conditions.
我们研究通过非凸优化来估计低秩矩阵。与凸松弛相比,非凸优化在大规模低秩矩阵估计实例中展现出卓越的经验性能。然而,对其理论保障的理解却很有限。在本文中,我们定义了投影预言机散度的概念,并在此基础上建立了非凸优化成功的充分条件。我们阐述了这个通用框架对矩阵感知的影响。特别地,我们证明了一大类非凸优化算法,包括交替最小化和梯度型方法,在标准条件下几何收敛到全局最优解并能精确恢复真实的低秩矩阵。