Suppr超能文献

通过非凸奇异值最小化实现稳健的低秩张量恢复

Robust Low-Rank Tensor Recovery via Nonconvex Singular Value Minimization.

作者信息

Chen Lin, Jiang Xue, Liu Xingzhao, Zhou Zhixin

出版信息

IEEE Trans Image Process. 2020 Sep 18;PP. doi: 10.1109/TIP.2020.3023798.

Abstract

Tensor robust principal component analysis via tensor nuclear norm (TNN) minimization has been recently proposed to recover the low-rank tensor corrupted with sparse noise/outliers. TNN is demonstrated to be a convex surrogate of rank. However, it tends to over-penalize large singular values and thus usually results in biased solutions. To handle this issue, we propose a new definition of tensor logarithmic norm (TLN) as the nonconvex surrogate of rank, which can decrease the penalization on larger singular values and increase that on smaller ones simultaneously to preserve the low-rank structure of a tensor. Then, the strategy of tensor factorization is combined into the minimization of TLN to improve computational performance. To handle impulsive scenarios, we propose a nonconvex 'p-ball projection scheme with 0 < p < 1 instead of the conventional convex scheme with p = 1, which enhances the robustness against outliers. By incorporating the TLN minimization and the 'p-ball projection, we finally propose two low-rank recovery algorithms, whose resulting optimization problems are efficiently solved by the alternating direction method of multipliers (ADMM) with convergence guarantees. The proposed algorithms are applied to the synthetic data recovery and image and video restorations in real-world. Experimental results demonstrate the superior performance of the proposed methods over several state-ofthe- art algorithms in terms of tensor recovery accuracy and computational efficiency.

摘要

最近提出了通过张量核范数(TNN)最小化的张量鲁棒主成分分析,以恢复被稀疏噪声/离群值破坏的低秩张量。TNN被证明是秩的凸替代。然而,它倾向于过度惩罚大奇异值,因此通常会导致有偏差的解。为了解决这个问题,我们提出了一种新的张量对数范数(TLN)定义作为秩的非凸替代,它可以减少对较大奇异值的惩罚,同时增加对较小奇异值的惩罚,以保留张量的低秩结构。然后,将张量分解策略与TLN最小化相结合,以提高计算性能。为了处理脉冲场景,我们提出了一种0 < p < 1的非凸“p球投影方案”,而不是传统的p = 1的凸方案,这增强了对离群值的鲁棒性。通过结合TLN最小化和“p球投影”,我们最终提出了两种低秩恢复算法,其产生的优化问题通过具有收敛保证的交替方向乘子法(ADMM)有效地解决。所提出的算法应用于合成数据恢复以及实际中的图像和视频恢复。实验结果表明,在所提出的方法在张量恢复精度和计算效率方面优于几种现有算法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验