Suppr超能文献

基于细胞生物力学特性的微流控分级分离实现细胞富集

Cellular enrichment through microfluidic fractionation based on cell biomechanical properties.

作者信息

Wang Gonghao, Turbyfield Cory, Crawford Kaci, Alexeev Alexander, Sulchek Todd

机构信息

George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Drive, Atlanta, GA, 30332-0405, USA.

Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Drive, Atlanta, GA, 30332-0535, USA.

出版信息

Microfluid Nanofluidics. 2015 Oct;19(4):987-993. doi: 10.1007/s10404-015-1608-y. Epub 2015 Jun 16.

Abstract

The biomechanical properties of populations of diseased cells are shown to have differences from healthy populations of cells, yet the overlap of these biomechanical properties can limit their use in disease cell enrichment and detection. We report a new microfluidic cell enrichment technology that continuously fractionates cells through differences in biomechanical properties, resulting in highly pure cellular subpopulations. Cell fractionation is achieved in a microfluidic channel with an array of diagonal ridges that are designed to segregate biomechanically distinct cells to different locations in the channel. Due to the imposition of elastic and viscous forces during cellular compression, which are a function of cell biomechanical properties including size and viscoelasticity, larger, stiffer and less viscos cells migrate parallel to the diagonal ridges and exhibit positive lateral displacement. On the other hand, smaller, softer and more viscous cells migrate perpendicular to the diagonal ridges due to circulatory flow induced by the ridges and result in negative lateral displacement. Multiple outlets are then utilized to collect cells with finer gradation of differences in cell biomechanical properties. The result is that cell fractionation dramatically improves cell separation efficiency compared to binary outputs and enables the measurement of subtle biomechanical differences within a single cell type. As a proof-of-concept demonstration, we mix two different leukemia cell lines (K562 and HL60) and utilize cell fractionation to achieve over 45-fold enhancement of cell populations, with high purity cellular enrichment (90% to 99%) of each cell line. In addition, we demonstrate cell fractionation of a single cell type (K562 cells) into subpopulations and characterize the variations of biomechanical properties of the separated cells with atomic force microscopy. These results will be beneficial to obtaining label-free separation of cellular mixtures, or to better investigate the origins of biomechanical differences in a single cell type.

摘要

研究表明,病变细胞群体的生物力学特性与健康细胞群体存在差异,然而这些生物力学特性的重叠会限制其在疾病细胞富集和检测中的应用。我们报告了一种新的微流控细胞富集技术,该技术通过生物力学特性的差异对细胞进行连续分级分离,从而得到高纯度的细胞亚群。细胞分级分离在一个带有对角脊阵列的微流控通道中实现,这些对角脊被设计用于将生物力学特性不同的细胞分离到通道中的不同位置。在细胞压缩过程中,由于施加了弹性力和粘性力,这些力是细胞生物力学特性(包括大小和粘弹性)的函数,较大、较硬且粘性较小的细胞会平行于对角脊迁移并表现出正向横向位移。另一方面,较小、较软且粘性较大的细胞由于脊引起的循环流动而垂直于对角脊迁移,并导致负向横向位移。然后利用多个出口收集细胞生物力学特性差异更细微分级的细胞。结果是,与二元输出相比,细胞分级分离显著提高了细胞分离效率,并能够测量单一细胞类型内细微的生物力学差异。作为概念验证演示,我们将两种不同的白血病细胞系(K562和HL60)混合,并利用细胞分级分离实现细胞群体超过45倍的富集,每个细胞系的细胞纯度都很高(90%至99%)。此外,我们展示了将单一细胞类型(K562细胞)分级分离为亚群,并通过原子力显微镜表征分离细胞的生物力学特性变化。这些结果将有助于实现细胞混合物的无标记分离,或更好地研究单一细胞类型中生物力学差异的起源。

相似文献

1
Cellular enrichment through microfluidic fractionation based on cell biomechanical properties.
Microfluid Nanofluidics. 2015 Oct;19(4):987-993. doi: 10.1007/s10404-015-1608-y. Epub 2015 Jun 16.
3
Stiffness based enrichment of leukemia cells using microfluidics.
APL Bioeng. 2020 Jul 1;4(3):036101. doi: 10.1063/1.5143436. eCollection 2020 Sep.
4
Label-free microfluidic isolation of functional and viable lymphocytes from peripheral blood mononuclear cells.
Biomicrofluidics. 2023 Sep 18;17(5):054102. doi: 10.1063/5.0161047. eCollection 2023 Sep.
5
Microfluidic Sorting of Cells by Viability Based on Differences in Cell Stiffness.
Sci Rep. 2017 May 17;7(1):1997. doi: 10.1038/s41598-017-01807-z.
7
Microfluidic Adaptation of Density-Gradient Centrifugation for Isolation of Particles and Cells.
Bioengineering (Basel). 2017 Aug 2;4(3):67. doi: 10.3390/bioengineering4030067.
8
Planar AFM macro-probes to study the biomechanical properties of large cells and 3D cell spheroids.
Acta Biomater. 2019 Aug;94:505-513. doi: 10.1016/j.actbio.2019.05.072. Epub 2019 May 30.
9
A label-free cell separation using surface acoustic waves.
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:7691-4. doi: 10.1109/IEMBS.2011.6091895.
10
Microfluidic Analysis for Separating and Measuring the Deformability of Cancer Cell Subpopulations.
ACS Omega. 2019 May 9;4(5):8318-8323. doi: 10.1021/acsomega.8b02249. eCollection 2019 May 31.

引用本文的文献

3
Scaling microfluidic throughput with flow-balanced manifolds to simply control devices with multiple inlets and outlets.
Biomicrofluidics. 2022 May 16;16(3):034104. doi: 10.1063/5.0080510. eCollection 2022 May.
4
Stiffness based enrichment of leukemia cells using microfluidics.
APL Bioeng. 2020 Jul 1;4(3):036101. doi: 10.1063/1.5143436. eCollection 2020 Sep.
5
Cell trapping in Y-junction microchannels: A numerical study of the bifurcation angle effect in inertial microfluidics.
Phys Fluids (1994). 2019 Aug;31(8):082003. doi: 10.1063/1.5113516. Epub 2019 Aug 9.
6
Microfluidic generation of transient cell volume exchange for convectively driven intracellular delivery of large macromolecules.
Mater Today (Kidlington). 2018 Sep;21(7):703-712. doi: 10.1016/j.mattod.2018.03.002. Epub 2018 Apr 17.
7
Biophysical subsets of embryonic stem cells display distinct phenotypic and morphological signatures.
PLoS One. 2018 Mar 8;13(3):e0192631. doi: 10.1371/journal.pone.0192631. eCollection 2018.
8
9
Microfluidic Sorting of Cells by Viability Based on Differences in Cell Stiffness.
Sci Rep. 2017 May 17;7(1):1997. doi: 10.1038/s41598-017-01807-z.
10
Cellular Stiffness as a Novel Stemness Marker in the Corneal Limbus.
Biophys J. 2016 Oct 18;111(8):1761-1772. doi: 10.1016/j.bpj.2016.09.005.

本文引用的文献

1
Real-time deformability cytometry: on-the-fly cell mechanical phenotyping.
Nat Methods. 2015 Mar;12(3):199-202, 4 p following 202. doi: 10.1038/nmeth.3281. Epub 2015 Feb 2.
3
Mechanical stiffness as an improved single-cell indicator of osteoblastic human mesenchymal stem cell differentiation.
J Biomech. 2014 Jun 27;47(9):2197-204. doi: 10.1016/j.jbiomech.2013.11.017. Epub 2013 Nov 17.
4
Viscoelasticity as a biomarker for high-throughput flow cytometry.
Biophys J. 2013 Nov 19;105(10):2281-8. doi: 10.1016/j.bpj.2013.10.003.
5
Stiffness dependent separation of cells in a microfluidic device.
PLoS One. 2013 Oct 16;8(10):e75901. doi: 10.1371/journal.pone.0075901. eCollection 2013.
6
Microfluidics separation reveals the stem-cell-like deformability of tumor-initiating cells.
Proc Natl Acad Sci U S A. 2012 Nov 13;109(46):18707-12. doi: 10.1073/pnas.1209893109. Epub 2012 Oct 29.
7
Cell stiffness is a biomarker of the metastatic potential of ovarian cancer cells.
PLoS One. 2012;7(10):e46609. doi: 10.1371/journal.pone.0046609. Epub 2012 Oct 4.
8
Hydrodynamic stretching of single cells for large population mechanical phenotyping.
Proc Natl Acad Sci U S A. 2012 May 15;109(20):7630-5. doi: 10.1073/pnas.1200107109. Epub 2012 Apr 30.
9
Microfluidic approaches for cancer cell detection, characterization, and separation.
Lab Chip. 2012 Apr 24;12(10):1753-67. doi: 10.1039/c2lc21273k. Epub 2012 Mar 21.
10
Cell sorting by deterministic cell rolling.
Lab Chip. 2012 Apr 21;12(8):1427-30. doi: 10.1039/c2lc21225k. Epub 2012 Feb 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验