Suppr超能文献

在内华达州拉斯维加斯大都市区的11所小学中,单一入口社区和死胡同是否会阻碍学生步行或骑车上学?

Are single entry communities and cul-de-sacs a barrier to active transport to school in 11 elementary schools in Las Vegas, NV metropolitan area?

作者信息

Coughenour Courtney, Clark Sheila, Singh Ashok, Huebner Joshua

机构信息

School of Community Health Sciences, University of Nevada, Las Vegas, 4505 S. Maryland Parkway box 3064, Las Vegas, NV 89154, United States.

William F. Harrah College of Hotel Administration, University of Nevada, Las Vegas, 4505 S. Maryland Parkway box 6021, Las Vegas, NV 89154, United States.

出版信息

Prev Med Rep. 2017 Feb 17;6:144-148. doi: 10.1016/j.pmedr.2017.02.011. eCollection 2017 Jun.

Abstract

Single entry communities (SECs) and cul-de-sacs minimize route choices and increase trip distance. Las Vegas' built environment facilitates the examination of these variables and active transport to school (ATS) rates. The purpose of this study was to examine the influence of SECs and cul-de-sacs on ATS rates in Las Vegas, NV elementary children. Parental-reported data was collected from 11 elementary schools on ATS rates (n = 1217). SECs and cul-de-sacs were quantified for each school zone. Logistic regression models were used to predict ATS. 23.9% of students reported ATS all of the time and 31.4% some of the time. SECs per school zone ranged from 0 to 25 (mean = 11.9). Cul-de-sacs ranged from 12 to 315 (mean = 138.3). Some ATS use was predicted by distance from school (p ≤ 0.001;OR = 0.61), parental education (high school: p = 0.004;OR = 0.53, some college: p = 0.001;OR = 0.50, 4 year degree: p = 0.004;OR = 0.52) and cul-de-sacs (p ≤ 0.001;OR = 0.99). A separate model using distance from school (p ≤ 0.001;OR = 0.61), parental education (high school: p = 0.002;OR = 0.51, some college: p ≤ 0.001;OR = 0.45, 4 year degree: p ≤ 0.001;OR = 0.45) and SECs (p ≤ 0.001;OR = 0.96) predicted some ATS. All ATS use was predicted by distance from school (p ≤ 0.001;OR = 0.58), parental education (Grades 9-11: p = 0.05;OR = 0.61, high school: p ≤ 0.001;OR = 0.45, some college: p ≤ 0.001;OR = 0.41, 4 year degree: p ≤ 0.001;OR = 0.38) and SECs (p ≤ 0.001;OR = 0.97). A separate model using distance from school (p ≤ 0.001;OR = 0.58), parental education (Grades 9-11: p = 0.041;OR = 0.59, high school: p ≤ 0.001;OR = 0.47, some college: p ≤ 0.001;OR = 0.44, 4 year degree: p ≤ 0.001;OR = 0.43) and cul-de-sacs (p ≤ 0.001;OR = 0.99) predicted all ATS. Current findings reveal that both SECs and cul-de-sacs were predictors of ATS beyond distance. Students with more SECs and cul-de-sacs in their school zone were less likely to utilize ATS.

摘要

单一入口社区(SECs)和死胡同减少了路线选择并增加了出行距离。拉斯维加斯的建筑环境有助于对这些变量以及步行或骑自行车上学(ATS)的比率进行研究。本研究的目的是调查内华达州拉斯维加斯市小学儿童所在社区的单一入口社区和死胡同对步行或骑自行车上学比率的影响。我们从11所小学收集了家长报告的关于步行或骑自行车上学比率的数据(n = 1217)。对每个学区的单一入口社区和死胡同进行了量化。使用逻辑回归模型来预测步行或骑自行车上学的情况。23.9%的学生报告他们总是步行或骑自行车上学,31.4%的学生有时会这样做。每个学区的单一入口社区数量从0到25不等(平均 = 11.9)。死胡同数量从12到315不等(平均 = 138.3)。学校距离(p≤0.001;OR = 0.61)、家长教育程度(高中:p = 0.004;OR = 0.53,部分大学学历:p = 0.001;OR = 0.50,四年制学位:p = 0.004;OR = 0.52)和死胡同数量(p≤0.001;OR = 0.99)可以预测部分步行或骑自行车上学的情况。另一个使用学校距离(p≤0.001;OR = 0.61)、家长教育程度(高中:p = 0.002;OR = 0.51,部分大学学历:p≤0.001;OR = 0.45,四年制学位:p≤0.001;OR = 0.45)和单一入口社区数量(p≤0.001;OR = 0.96)的模型也可以预测部分步行或骑自行车上学的情况。学校距离(p≤0.001;OR = 0.58)、家长教育程度(9 - 高中:p = 0.05;OR = 0.61,高中:p≤0.001;OR = 0.45,部分大学学历:p≤0.001;OR = 0.41,四年制学位:p≤0.001;OR = 0.38)和单一入口社区数量(p≤0.001;OR = 0.97)可以预测所有步行或骑自行车上学情况。另一个使用学校距离(p≤0.001;OR = 0.58)、家长教育程度(9 - 高中:p = 0.041;OR = 0.59,高中:p≤

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c5f/5345953/8d6a863a72ef/gr1.jpg

相似文献

2
Predictors of Active Transportation Among Safe Routes to School Participants in Arizona: Impacts of Distance and Income.
J Sch Health. 2022 Mar;92(3):282-292. doi: 10.1111/josh.13125. Epub 2021 Dec 16.
3
Single Entry Communities Increase Trip Distance and May Overestimate Neighborhood Walkability.
J Phys Act Health. 2015 Jun 16;12 Suppl 1:S46-52. doi: 10.1123/jpah.2013-0343.
4
Active Travel to and From School Among School-Age Children During 1997-2011 and Associated Factors in China.
J Phys Act Health. 2017 Sep;14(9):684-691. doi: 10.1123/jpah.2016-0590. Epub 2017 May 17.
5
Built Environment and Active Transport to School (BEATS) Study: protocol for a cross-sectional study.
BMJ Open. 2016 May 24;6(5):e011196. doi: 10.1136/bmjopen-2016-011196.
8
Children's route choice during active transportation to school: difference between shortest and actual route.
Int J Behav Nutr Phys Act. 2016 Apr 12;13:48. doi: 10.1186/s12966-016-0373-y.
10
Prevalence and correlates of walking and biking to school among adolescents.
J Community Health. 2009 Apr;34(2):129-34. doi: 10.1007/s10900-008-9135-3.

引用本文的文献

1
Promoting active student travel: A longitudinal study.
J Transp Geogr. 2018 Jun;70:265-274. doi: 10.1016/j.jtrangeo.2018.06.015. Epub 2018 Jul 5.

本文引用的文献

2
Using GPS Data to Study Neighborhood Walkability and Physical Activity.
Am J Prev Med. 2016 Mar;50(3):e65-e72. doi: 10.1016/j.amepre.2015.07.033. Epub 2015 Nov 7.
3
Patterns of Walkability, Transit, and Recreation Environment for Physical Activity.
Am J Prev Med. 2015 Dec;49(6):878-87. doi: 10.1016/j.amepre.2015.05.024. Epub 2015 Jul 29.
5
A century of sprawl in the United States.
Proc Natl Acad Sci U S A. 2015 Jul 7;112(27):8244-9. doi: 10.1073/pnas.1504033112. Epub 2015 Jun 15.
6
Single Entry Communities Increase Trip Distance and May Overestimate Neighborhood Walkability.
J Phys Act Health. 2015 Jun 16;12 Suppl 1:S46-52. doi: 10.1123/jpah.2013-0343.
7
Influence of social and built environment features on children walking to school: an observational study.
Prev Med. 2014 Mar;60:10-5. doi: 10.1016/j.ypmed.2013.12.005. Epub 2013 Dec 11.
8
U.S. school travel, 2009 an assessment of trends.
Am J Prev Med. 2011 Aug;41(2):146-51. doi: 10.1016/j.amepre.2011.04.006.
9
School site and the potential to walk to school: the impact of street connectivity and traffic exposure in school neighborhoods.
Health Place. 2011 Mar;17(2):545-50. doi: 10.1016/j.healthplace.2010.12.011. Epub 2010 Dec 19.
10
Neighborhood, route, and school environments and children's active commuting.
Am J Prev Med. 2010 Mar;38(3):268-78. doi: 10.1016/j.amepre.2009.10.040.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验