Suppr超能文献

如何从社区数据中获得更多信息?一个概念框架及其作为模型和软件的实现。

How to make more out of community data? A conceptual framework and its implementation as models and software.

机构信息

Department of Biosciences, University of Helsinki, P.O. Box 65, Helsinki, FI-00014, Finland.

Department of Biology, Centre for Biodiversity Dynamics, Norwegian University of Science and Technology, N-7491, Trondheim, Norway.

出版信息

Ecol Lett. 2017 May;20(5):561-576. doi: 10.1111/ele.12757. Epub 2017 Mar 20.

Abstract

Community ecology aims to understand what factors determine the assembly and dynamics of species assemblages at different spatiotemporal scales. To facilitate the integration between conceptual and statistical approaches in community ecology, we propose Hierarchical Modelling of Species Communities (HMSC) as a general, flexible framework for modern analysis of community data. While non-manipulative data allow for only correlative and not causal inference, this framework facilitates the formulation of data-driven hypotheses regarding the processes that structure communities. We model environmental filtering by variation and covariation in the responses of individual species to the characteristics of their environment, with potential contingencies on species traits and phylogenetic relationships. We capture biotic assembly rules by species-to-species association matrices, which may be estimated at multiple spatial or temporal scales. We operationalise the HMSC framework as a hierarchical Bayesian joint species distribution model, and implement it as R- and Matlab-packages which enable computationally efficient analyses of large data sets. Armed with this tool, community ecologists can make sense of many types of data, including spatially explicit data and time-series data. We illustrate the use of this framework through a series of diverse ecological examples.

摘要

群落生态学旨在理解哪些因素决定了不同时空尺度下物种组合的组装和动态。为了促进群落生态学中概念和统计方法的整合,我们提出了物种群落的分层模型(HMSC),作为现代群落数据分析的通用、灵活的框架。虽然非干预性数据只允许进行相关性推断,而不能进行因果推断,但该框架有助于针对构成群落的过程形成数据驱动的假设。我们通过个体物种对其环境特征的响应的变化和协变来模拟环境过滤,物种特征和系统发育关系可能存在潜在的偶然性。我们通过物种-物种关联矩阵来捕获生物群落组装规则,这些矩阵可以在多个空间或时间尺度上进行估计。我们将 HMSC 框架实现为一个分层贝叶斯联合物种分布模型,并将其实现为 R 和 Matlab 包,这些包可以实现对大型数据集的高效计算分析。有了这个工具,群落生态学家就可以理解多种类型的数据,包括空间显式数据和时间序列数据。我们通过一系列不同的生态例子来说明该框架的使用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验