Suppr超能文献

二维 IV 族和 V 族材料中声子输运的褶皱结构的冲突作用。

The conflicting role of buckled structure in phonon transport of 2D group-IV and group-V materials.

机构信息

Department of Optical Science and Engineering and Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, Shanghai 200433, China.

出版信息

Nanoscale. 2017 Jun 8;9(22):7397-7407. doi: 10.1039/c7nr00838d.

Abstract

Controlling heat transport through material design is one important step toward thermal management in 2D materials. To control heat transport, a comprehensive understanding of how structure influences heat transport is required. It has been argued that a buckled structure is able to suppress heat transport by increasing the flexural phonon scattering. Using a first principles approach, we calculate the lattice thermal conductivity of 2D mono-elemental materials with a buckled structure. Somewhat counterintuitively, we find that although 2D group-V materials have a larger mass and higher buckling height than their group-IV counterparts, the calculated κ of blue phosphorene (106.6 W mK) is nearly four times higher than that of silicene (28.3 W mK), while arsenene (37.8 W mK) is more than fifteen times higher than germanene (2.4 W mK). We report for the first time that a buckled structure has three conflicting effects: (i) increasing the Debye temperature by increasing the overlap of the p orbitals, (ii) suppressing the acoustic-optical scattering by forming an acoustic-optical gap, and (iii) increasing the flexural phonon scattering. The former two, corresponding to the harmonic phonon part, tend to enhance κ, while the last one, corresponding to the anharmonic part, suppresses it. This relationship between the buckled structure and phonon behaviour provides insight into how to control heat transport in 2D materials.

摘要

通过材料设计控制热量传输是二维材料热管理的重要一步。为了控制热量传输,需要全面了解结构如何影响热量传输。有人认为,通过增加弯曲声子散射,褶皱结构能够抑制热量传输。我们采用第一性原理方法计算了具有褶皱结构的二维单元素材料的晶格热导率。有些出人意料的是,我们发现尽管二维 V 族材料的质量更大,褶皱高度更高,但计算得到的蓝磷烯(106.6 W mK)的 κ 值几乎是硅烯(28.3 W mK)的四倍,而砷烯(37.8 W mK)的 κ 值则是锗烯(2.4 W mK)的十五倍以上。我们首次报告称,褶皱结构有三种相互矛盾的作用:(i)通过增加 p 轨道的重叠来提高德拜温度,(ii)通过形成声子光学能隙来抑制声子光学散射,以及(iii)增加弯曲声子散射。前两者对应于谐频声子部分,往往会增强 κ 值,而最后一个对应于非谐频部分,会抑制它。这种褶皱结构与声子行为之间的关系为如何控制二维材料中的热量传输提供了深入的了解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验