Department of Chemistry and Centre for Plastic Electronics, Imperial College London , South Kensington Campus, London SW7 2AZ, U.K.
Group of Solar Energy & Advanced Materials, Department of Chemical Engineering, University College London , Torrington Place, London WC1E 7JE, U.K.
J Am Chem Soc. 2017 Apr 12;139(14):5216-5224. doi: 10.1021/jacs.7b01547. Epub 2017 Mar 31.
Carbon nitride (g-CN) as a benchmark polymer photocatalyst is attracting significant research interest because of its visible light photocatalytic performance combined with good stability and facile synthesis. However, little is known about the fundamental photophysical processes of g-CN, which are key to explain and promote photoactivity. Using time-resolved absorption and photoluminescence spectroscopies, we have investigated the photophysics of a series of carbon nitrides on time scales ranging from femtoseconds to seconds. Free charge carriers form within a 200 fs excitation pulse, trap on the picosecond time scale with trap states in a range of energies, and then recombine with power law decays that are indicative of charge trapping-detrapping processes. Delayed photoluminescence is assigned to thermal excitation of trapped carriers back up to the conduction/valence bands. We develop a simple, quantitative model for the charge carrier dynamics in these photocatalysts, which includes carrier relaxation into an exponential tail of trap states extending up to 1.5 eV into the bandgap. This trapping reduces the efficiency of surface photocatalytic reactions. Deep trapped electrons observed on micro- to millisecond time scales are unable to reduce electron acceptors on the surface or in solution. Within a series of g-CN, the yield of these unreactive trapped electrons correlates inversely with H evolution rates. We conclude by arguing that the photophysics of these carbon nitride materials show closer parallels with inorganic semiconductors than conjugated polymers, and that the key challenge to optimize photocatalytic activity of these materials is to prevent electron trapping into deep, and photocatalytically inactive, electron trap states.
氮化碳(g-CN)作为一种基准聚合物光催化剂,由于其可见光光催化性能与良好的稳定性和易于合成相结合,因此引起了人们的极大研究兴趣。然而,人们对 g-CN 的基本光物理过程知之甚少,这些过程是解释和促进光活性的关键。我们使用飞秒至秒时间范围内的瞬态吸收和光致发光光谱研究了一系列碳氮化物的光物理性质。在 200 fs 的激发脉冲内形成自由电荷载流子,在皮秒时间尺度上通过陷阱态以一系列能量进行陷阱,然后通过指数衰减进行复合,表明存在电荷俘获-脱陷过程。延迟光致发光归因于热激发被陷阱的载流子返回到导带/价带。我们为这些光催化剂中的载流子动力学开发了一个简单的定量模型,该模型包括载流子弛豫到扩展到能带隙中 1.5 eV 的陷阱态的指数尾部。这种俘获降低了表面光催化反应的效率。在微秒至毫秒时间范围内观察到的深捕获电子无法还原表面或溶液中的电子受体。在一系列 g-CN 中,这些非反应性捕获电子的产率与 H 演化速率呈反比。我们的结论是,这些碳氮化物材料的光物理性质与无机半导体更接近,而不是共轭聚合物,优化这些材料的光催化活性的关键挑战是防止电子被捕获到深的、光催化惰性的电子陷阱态中。