Liu Hao, Yang Bin, Liao Guangfu, Huang Baoyu, Li Jun, Rodriguez Raul D, Jia Xin
School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, China.
College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, P. R. China.
Nat Commun. 2025 Jul 1;16(1):5909. doi: 10.1038/s41467-025-61185-3.
Achieving high specific surface area (HSSA) in graphitic carbon nitride (g-CN) severely depolymerizes the molecular chain structure, resulting in sluggish carrier kinetic behaviors and thus moderated water purification performance in photocatalytic peroxymonosulfate (PMS) activation system. Herein, we report a versatile shear-repair strategy for fabricating ultrathin porous g-CN nanosheets with a thickness of 1.5 nm, HSSA (138.5 m g), and highly polymerized molecular chains. This strategy accelerates exciton dissociation and charge carrier separation, with the exciton binding energy decreasing from 65.7 to 47.5 meV. Crucially, the electron-donating pollutant and electron-withdrawing PMS generate a microelectric field at the g-CN surface that activates PMS to generate O sustainably. Consequently, our catalyst exhibits an exceptional imidacloprid (IMD) removal performance with a rate constant of 0.405 min and remarkable PMS utilization efficiency (90% within 15 min). Moreover, under real conditions of sunlight irradiation, we observe an outstanding pollutants' removal efficiency with a near-100% degradation rate over 20 days of continuous operation. Our work emphasizes the feasibility of synergistic molecular-level structural engineering for refining carrier kinetic behaviors in high-performance photocatalyst design.
在石墨相氮化碳(g-CN)中实现高比表面积(HSSA)会严重使分子链结构解聚,导致载流子动力学行为迟缓,进而在光催化过一硫酸盐(PMS)活化体系中使水净化性能受到影响。在此,我们报道了一种通用的剪切修复策略,用于制备厚度为1.5纳米、具有高比表面积(138.5平方米/克)和高度聚合分子链的超薄多孔g-CN纳米片。该策略加速了激子解离和电荷载流子分离,激子结合能从65.7毫电子伏特降至47.5毫电子伏特。至关重要的是,给电子污染物和吸电子PMS在g-CN表面产生一个微电场,可持续地激活PMS以生成超氧阴离子。因此,我们的催化剂表现出卓越的吡虫啉(IMD)去除性能,速率常数为0.405分钟,且具有显著的PMS利用效率(15分钟内达到90%)。此外,在阳光照射的实际条件下,我们观察到在连续运行20天内具有近100%的降解率,污染物去除效率出色。我们的工作强调了协同分子水平结构工程在高性能光催化剂设计中优化载流子动力学行为的可行性。