Tack Liew Weng, Azam Mohd Asyadi, Seman Raja Noor Amalina Raja
Carbon Research Technology Research Group, Advanced Manufacturing Centre, Faculty of Manufacturing Engineering, Universiti Teknikal Malaysia Melaka , Hang Tuah Jaya, 76100 Durian Tunggal, Melaka Malaysia.
J Phys Chem A. 2017 Apr 6;121(13):2636-2642. doi: 10.1021/acs.jpca.6b12904. Epub 2017 Mar 24.
Single-walled carbon nanotubes (SWCNTs) and metal oxides (MOs), such as manganese(IV) oxide (MnO), cobalt(II, III) oxide (CoO), and nickel(II) oxide (NiO) hybrid structures, have received great attention because of their promising application in lithium-ion batteries (LIBs). As electrode materials for LIBs, the structure of SWCNT/MOs provides high power density, good electrical conductivity, and excellent cyclic stability. In this work, first-principles calculations were used to investigate the structural and electronic properties of MOs attached to (5, 5) SWCNT and Li-ion adsorption to SWCNT/metal oxide composites as electrode materials in LIBs. Emphasis was placed on the synergistic effects of the composite on the electrochemical performance of LIBs in terms of adsorption capabilities and charge transfer of Li-ions attached to (5, 5) SWCNT and metal oxides. Also, Li adsorption energy on SWCNTs and three different metal oxides (NiO, MnO, and CoO) and the accompanying changes in the electronic properties, such as band structure, density of states and charge distribution as a function of Li adsorption were calculated. On the basis of the calculation results, the top C atom was found to be the most stable position for the NiO and MnO attachment to SWCNT, while the CoO molecule, the Co, was found to be the most stable attachment on SWCNT. The obtained results show that the addition of MOs to the SWCNT electrode enables an increase in specific surface area and improves the electronic conductivity and charge transfer of an LIB.
单壁碳纳米管(SWCNTs)与金属氧化物(MOs),如二氧化锰(MnO)、钴(II, III)氧化物(CoO)和氧化镍(NiO)的混合结构,因其在锂离子电池(LIBs)中的应用前景而备受关注。作为LIBs的电极材料,SWCNT/MOs结构具有高功率密度、良好的导电性和出色的循环稳定性。在这项工作中,采用第一性原理计算来研究附着在(5, 5)SWCNT上的MOs的结构和电子性质,以及作为LIBs电极材料的SWCNT/金属氧化物复合材料对锂离子的吸附情况。重点在于从附着在(5, 5)SWCNT和金属氧化物上的锂离子的吸附能力和电荷转移方面,研究复合材料对LIBs电化学性能的协同效应。此外,还计算了锂离子在SWCNTs和三种不同金属氧化物(NiO、MnO和CoO)上的吸附能,以及伴随锂吸附的电子性质变化,如能带结构、态密度和电荷分布。根据计算结果,发现对于NiO和MnO附着在SWCNT上,顶部的C原子是最稳定的位置,而对于CoO分子,Co原子是在SWCNT上最稳定的附着位置。所得结果表明,向SWCNT电极中添加MOs能够增加比表面积,并提高LIB的电子导电性和电荷转移能力。