Department of Occupational and Environmental Health, School of Public Health, Université de Montréal, Montreal, Quebec, Canada; Université de Montréal Public Health Research Institute (IRSPUM), Montreal, Quebec, Canada.
Department of Occupational and Environmental Health, School of Public Health, Université de Montréal, Montreal, Quebec, Canada; Université de Montréal Public Health Research Institute (IRSPUM), Montreal, Quebec, Canada.
Environ Int. 2017 May;102:223-229. doi: 10.1016/j.envint.2017.03.007. Epub 2017 Mar 18.
Women are exposed to multiple environmental chemicals, many of which are known to transfer to breast milk during lactation. However, little is known about the influence of the different chemical-specific pharmacokinetic parameters on children's lactational dose. Our objective was to develop a generic pharmacokinetic model and subsequently quantify the influence of three chemical-specific parameters (biological half-life, milk:plasma partition coefficient, and volume of distribution) on lactational exposure to chemicals and resulting plasma levels in children. We developed a two-compartment pharmacokinetic model to simulate lifetime maternal exposure, placental transfer, and lactational exposure to the child. We performed 10,000 Monte Carlo simulations where half-life, milk:plasma partition coefficient, and volume of distribution were varied. Children's dose and plasma levels were compared to their mother's by calculating child:mother dose ratios and plasma level ratios. We then evaluated the association between the three chemical-specific pharmacokinetic parameters and child:mother dose and level ratios through linear regression and decision trees. Our analyses revealed that half-life was the most influential parameter on children's lactational dose and plasma concentrations, followed by milk:plasma partition coefficient and volume of distribution. In bivariate regression analyses, half-life explained 72% of child:mother dose ratios and 53% of child:mother level ratios. Decision trees aiming to identify chemicals with high potential for lactational exposure (ratio>1) had an accuracy of 89% for child:mother dose ratios and 84% for child:mother level ratios. Our study showed the relative importance of half-life, milk:plasma partition coefficient, and volume of distribution on children's lactational exposure. Developed equations and decision trees will enable the rapid identification of chemicals with a high potential for lactational exposure.
妇女接触多种环境化学物质,其中许多物质在哺乳期会转移到母乳中。然而,对于不同化学物质特定的药代动力学参数对儿童哺乳期剂量的影响知之甚少。我们的目的是开发一种通用的药代动力学模型,并随后量化三种化学物质特定参数(生物半衰期、奶:血浆分配系数和分布容积)对化学物质哺乳期暴露和儿童血浆水平的影响。我们开发了一个两室药代动力学模型来模拟母体终生暴露、胎盘转移和儿童哺乳期暴露。我们进行了 10,000 次蒙特卡罗模拟,其中半衰期、奶:血浆分配系数和分布容积发生变化。通过计算儿童:母亲剂量比和血浆水平比,将儿童的剂量和血浆水平与母亲的进行比较。然后,我们通过线性回归和决策树评估了三种化学物质特定的药代动力学参数与儿童:母亲剂量和水平比之间的关系。我们的分析表明,半衰期是影响儿童哺乳期剂量和血浆浓度的最主要参数,其次是奶:血浆分配系数和分布容积。在双变量回归分析中,半衰期解释了儿童:母亲剂量比的 72%和儿童:母亲血浆水平比的 53%。旨在识别具有高哺乳期暴露潜力(比值>1)的化学物质的决策树对于儿童:母亲剂量比的准确率为 89%,对于儿童:母亲血浆水平比的准确率为 84%。我们的研究表明了半衰期、奶:血浆分配系数和分布容积对儿童哺乳期暴露的相对重要性。开发的方程和决策树将能够快速识别具有高哺乳期暴露潜力的化学物质。