介绍一种基于计算机的方法,用于在考虑模拟肌肉力量的情况下自动规划复位路径。
Introduction of a computer-based method for automated planning of reduction paths under consideration of simulated muscular forces.
作者信息
Buschbaum Jan, Fremd Rainer, Pohlemann Tim, Kristen Alexander
机构信息
Fachbereich Angewandte Ingenieurwissenschaften, Hochschule Kaiserslautern - University of Applied Sciences, Schoenstraße 11, 67659, Kaiserslautern, Germany.
Department of Trauma, Hand and Reconstructive Surgery, Saarland University, Building 57, Kirrbergerstraße, 66421, Homburg/Saar, Germany.
出版信息
Int J Comput Assist Radiol Surg. 2017 Aug;12(8):1369-1381. doi: 10.1007/s11548-017-1562-0. Epub 2017 Mar 20.
PURPOSE
Reduction is a crucial step in the surgical treatment of bone fractures. Finding an optimal path for restoring anatomical alignment is considered technically demanding because collisions as well as high forces caused by surrounding soft tissues can avoid desired reduction movements. The repetition of reduction movements leads to a trial-and-error process which causes a prolonged duration of surgery. By planning an appropriate reduction path-an optimal sequence of target-directed movements-these problems should be overcome. For this purpose, a computer-based method has been developed.
METHODS
Using the example of simple femoral shaft fractures, 3D models are generated out of CT images. A reposition algorithm aligns both fragments by reconstructing their broken edges. According to the criteria of a deduced planning strategy, a modified A*-algorithm searches collision-free route of minimal force from the dislocated into the computed target position. Muscular forces are considered using a musculoskeletal reduction model (OpenSim model), and bone collisions are detected by an appropriate method.
RESULTS
Five femoral SYNBONE models were broken into different fracture classification types and were automatically reduced from ten randomly selected displaced positions. Highest mean translational and rotational error for achieving target alignment is [Formula: see text] and [Formula: see text]. Mean value and standard deviation of occurring forces are [Formula: see text] for M. tensor fasciae latae and [Formula: see text] for M. semitendinosus over all trials. These pathways are precise, collision-free, required forces are minimized, and thus regarded as optimal paths.
CONCLUSIONS
A novel method for planning reduction paths under consideration of collisions and muscular forces is introduced. The results deliver additional knowledge for an appropriate tactical reduction procedure and can provide a basis for further navigated or robotic-assisted developments.
目的
复位是骨折手术治疗中的关键步骤。寻找恢复解剖对线的最佳路径在技术上具有挑战性,因为周围软组织会产生碰撞以及高作用力,从而阻碍理想的复位动作。复位动作的重复会导致反复尝试的过程,进而延长手术时间。通过规划合适的复位路径——目标导向动作的最佳序列——这些问题应能得到解决。为此,已开发出一种基于计算机的方法。
方法
以单纯股骨干骨折为例,从CT图像生成三维模型。一种复位算法通过重建骨折断端边缘来对齐两个骨折块。根据推导的规划策略标准,一种改进的A*算法从脱位位置搜索到计算出的目标位置的最小力无碰撞路径。使用肌肉骨骼复位模型(OpenSim模型)考虑肌肉力量,并通过适当方法检测骨碰撞。
结果
五个SYNBONE股骨模型被折成不同的骨折分类类型,并从十个随机选择的移位位置自动复位。实现目标对线的最高平均平移和旋转误差分别为[公式:见原文]和[公式:见原文]。在所有试验中,阔筋膜张肌产生的力的平均值和标准差为[公式:见原文],半腱肌为[公式:见原文]。这些路径精确、无碰撞,所需力量最小,因此被视为最佳路径。
结论
介绍了一种在考虑碰撞和肌肉力量的情况下规划复位路径的新方法。研究结果为适当的策略性复位程序提供了更多知识,并可为进一步的导航或机器人辅助发展提供基础。