State Key Laboratory of Mesoscopic Physics and Department of Physics, Peking University , Beijing 100871, P. R. China.
Nanophotonics and Optoelectronics Research Center, Qian Xuesen Laboratory of Space Technology, China Academy of Space Technology , Beijing 100094, P. R. China.
ACS Appl Mater Interfaces. 2017 Apr 12;9(14):12694-12705. doi: 10.1021/acsami.6b16826. Epub 2017 Mar 30.
It is unreliable to evaluate the Schottky barrier height (SBH) in monolayer (ML) 2D material field effect transistors (FETs) with strongly interacted electrode from the work function approximation (WFA) because of existence of the Fermi-level pinning. Here, we report the first systematical study of bilayer (BL) phosphorene FETs in contact with a series of metals with a wide work function range (Al, Ag, Cu, Au, Cr, Ti, Ni, and Pd) by using both ab initio electronic band calculations and quantum transport simulation (QTS). Different from only one type of Schottky barrier (SB) identified in the ML phosphorene FETs, two types of SBs are identified in BL phosphorene FETs: the vertical SB between the metallized and the intact phosphorene layer, whose height is determined from the energy band analysis (EBA); the lateral SB between the metallized and the channel BL phosphorene, whose height is determined from the QTS. The vertical SBHs show a better consistency with the lateral SBHs of the ML phosphorene FETs from the QTS compared than that of the popular WFA. Therefore, we develop a better and more general method than the WFA to estimate the lateral SBHs of ML semiconductor transistors with strongly interacted electrodes based on the EBA for its BL counterpart. In terms of the QTS, n-type lateral Schottky contacts are formed between BL phosphorene and Cr, Al, and Cu electrodes with electron SBH of 0.27, 0.31, and 0.32 eV, respectively, while p-type lateral Schottky contacts are formed between BL phosphorene and Pd, Ti, Ni, Ag, and Au electrodes with hole SBH of 0.11, 0.18, 0.19, 0.20, and 0.21 eV, respectively. The theoretical polarity and SBHs are in good agreement with available experiments. Our study provides an insight into the BL phosphorene-metal interfaces that are crucial for designing the BL phosphorene device.
从功函数近似(WFA)来看,由于费米能级钉扎的存在,用其评估强相互作用电极单层(ML)二维材料场效应晶体管(FET)的肖特基势垒高度(SBH)是不可靠的。在这里,我们通过使用从头算电子能带计算和量子输运模拟(QTS),对与一系列功函数范围很宽的金属(Al、Ag、Cu、Au、Cr、Ti、Ni 和 Pd)接触的双层(BL)黑磷烯 FET 进行了首次系统研究。与 ML 黑磷烯 FET 中只识别出一种肖特基势垒(SB)不同,BL 黑磷烯 FET 中识别出两种 SB:金属化和完整黑磷烯层之间的垂直 SB,其高度由能带分析(EBA)确定;金属化和通道 BL 黑磷烯之间的横向 SB,其高度由 QTS 确定。与 QTS 相比,垂直 SBH 与从 QTS 获得的 ML 黑磷烯 FET 的横向 SBH 更吻合,而不是与流行的 WFA 更吻合。因此,我们为基于其 BL 对应物的强相互作用电极 ML 半导体晶体管开发了一种比 WFA 更好和更通用的方法来估计其横向 SBH。在 QTS 方面,BL 黑磷烯与 Cr、Al 和 Cu 电极之间形成 n 型横向肖特基接触,电子 SBH 分别为 0.27、0.31 和 0.32 eV,而 BL 黑磷烯与 Pd、Ti、Ni、Ag 和 Au 电极之间形成 p 型横向肖特基接触,空穴 SBH 分别为 0.11、0.18、0.19、0.20 和 0.21 eV。理论极性和 SBH 与现有实验吻合较好。我们的研究提供了对 BL 黑磷烯-金属界面的深入了解,这对于设计 BL 黑磷烯器件至关重要。