Zou Feihu, Cong Yao, Song Weiqi, Liu Haosong, Li Yanan, Zhu Yifan, Zhao Yue, Pan Yuanyuan, Li Qiang
College of Physics, Qingdao University, Qingdao 266071, China.
State Key Laboratory of Heavy Oil Processing, Institute of New Energy, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China.
Nanomaterials (Basel). 2024 Jan 23;14(3):238. doi: 10.3390/nano14030238.
The newly prepared monolayer (ML) SiAs is expected to be a candidate channel material for next-generation nano-electronic devices in virtue of its proper bandgap, high carrier mobility, and anisotropic properties. The interfacial properties in ML SiAs field-effect transistors are comprehensively studied with electrodes (graphene, VCO, Au, Ag, and Cu) by using ab initio electronic structure calculations and quantum transport simulation. It is found that ML SiAs forms a weak van der Waals interaction with graphene and VCO, while it forms a strong interaction with bulk metals (Au, Ag, and Cu). Although ML SiAs has strong anisotropy, it is not reflected in the contact property. Based on the quantum transport simulation, ML SiAs forms -type lateral Schottky contact with Au, Ag, and Cu electrodes with the Schottky barrier height (SBH) of 0.28 (0.27), 0.40 (0.47), and 0.45 (0.33) eV along the () direction, respectively, while it forms -type lateral Schottky contact with a graphene electrode with a SBH of 0.34 (0.28) eV. Fortunately, ML SiAs forms an ideal Ohmic contact with the VCO electrode. This study not only gives a deep understanding of the interfacial properties of ML SiAs with electrodes but also provides a guide for the design of ML SiAs devices.
新制备的单层(ML)硅砷化物因其合适的带隙、高载流子迁移率和各向异性特性,有望成为下一代纳米电子器件的候选沟道材料。通过使用从头算电子结构计算和量子输运模拟,对ML硅砷化物场效应晶体管中与电极(石墨烯、钒酸钴、金、银和铜)的界面特性进行了全面研究。研究发现,ML硅砷化物与石墨烯和钒酸钴形成弱范德华相互作用,而与块状金属(金、银和铜)形成强相互作用。尽管ML硅砷化物具有很强的各向异性,但在接触特性中并未体现出来。基于量子输运模拟,ML硅砷化物与金、银和铜电极沿()方向分别形成型横向肖特基接触,肖特基势垒高度(SBH)分别为0.28(0.27)、0.40(0.47)和0.45(0.33)eV,而与石墨烯电极形成型横向肖特基接触,SBH为0.34(0.28)eV。幸运的是,ML硅砷化物与钒酸钴电极形成理想的欧姆接触。这项研究不仅深入了解了ML硅砷化物与电极的界面特性,还为ML硅砷化物器件的设计提供了指导。