Suppr超能文献

黄病毒科病毒利用一种共同的分子机制来逃避核苷类似物抑制剂。

Flaviviridae viruses use a common molecular mechanism to escape nucleoside analogue inhibitors.

作者信息

Valdés James J, Butterill Philip T, Růžek Daniel

机构信息

Institute of Parasitology, The Czech Academy of Sciences, Branišovská 31, CZ-37005 České Budějovice, Czechia; Department of Virology, Veterinary Research Institute, Hudcova 70, CZ-62100 Brno, Czechia.

Biology Center, Czech Academy of Sciences, University of South Bohemia, Branišovská 31, CZ-37005 České Budějovice, Czechia.

出版信息

Biochem Biophys Res Commun. 2017 Oct 28;492(4):652-658. doi: 10.1016/j.bbrc.2017.03.068. Epub 2017 Mar 18.

Abstract

The RNA-dependent RNA polymerases of Flaviviridae viruses are crucial for replication. The Flaviviridae polymerase is organized into structural motifs (A-G), with motifs F, A, C and E containing interrogating, priming and catalytic substrate-interacting sites. Modified nucleoside analogues act as antiviral drugs by targeting Flaviviridae polymerases and integrating into the synthesized product causing premature termination. A threonine mutation of a conserved serine residue in motif B of Flaviviridae polymerases renders resistance to 2'-C-methylated nucleoside analogues. The mechanism how this single mutation causes Flaviviridae viruses to escape nucleoside analogues is not yet known. Given the pivotal position of the serine residue in motif B that supports motif F, we hypothesized the threonine mutation causes alterations in nucleoside exploration within the entry tunnel. Implementing a stochastic molecular software showed the all-atom 2'-C-methylated analogue reaction within the active sites of wild type and serine-threonine mutant polymerases from Hepacivirus and Flavivirus. Compared with the wild type, the serine-threonine mutant polymerases caused a significant decrease of analogue contacts with conserved interrogating residues in motif F and a displacement of metal ion cofactors. The simulations significantly showed that during the analogue exploration of the active site the hydrophobic methyl group in the serine-threonine mutant repels water-mediated hydrogen bonds with the 2'-C-methylated analogue, causing a concentration of water-mediated bonds at the substrate-interacting sites. Collectively, the data are an insight into a molecular escape mechanism by Flaviviridae viruses from 2'-C-methylated nucleoside analogue inhibitors.

摘要

黄病毒科病毒的RNA依赖性RNA聚合酶对病毒复制至关重要。黄病毒科聚合酶由结构基序(A - G)组成,其中基序F、A、C和E包含询问、引发和催化底物相互作用位点。修饰的核苷类似物通过靶向黄病毒科聚合酶并整合到合成产物中导致过早终止,从而起到抗病毒药物的作用。黄病毒科聚合酶基序B中一个保守丝氨酸残基的苏氨酸突变使病毒对2'-C-甲基化核苷类似物产生抗性。这种单一突变如何导致黄病毒科病毒逃避核苷类似物的机制尚不清楚。鉴于支持基序F的基序B中丝氨酸残基的关键位置,我们推测苏氨酸突变会导致进入通道内核苷探索的改变。使用随机分子软件展示了来自肝炎病毒属和黄病毒属的野生型和丝氨酸 - 苏氨酸突变型聚合酶活性位点内的全原子2'-C-甲基化类似物反应。与野生型相比,丝氨酸 - 苏氨酸突变型聚合酶导致与基序F中保守询问残基的类似物接触显著减少以及金属离子辅因子的位移。模拟结果显著表明,在活性位点的类似物探索过程中,丝氨酸 - 苏氨酸突变体中的疏水甲基排斥与2'-C-甲基化类似物的水介导氢键,导致水介导的键集中在底物相互作用位点。总体而言,这些数据深入揭示了黄病毒科病毒从2'-C-甲基化核苷类似物抑制剂逃逸的分子机制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验