Suppr超能文献

比较三种正则化方法以避免响应自适应随机化中的极端分配概率。

Comparing three regularization methods to avoid extreme allocation probability in response-adaptive randomization.

作者信息

Du Yining, Cook John D, Lee J Jack

机构信息

a Department of Biostatistics , Incyte Corporation , Wilmington , Delaware , USA.

b Singular Value Consulting.

出版信息

J Biopharm Stat. 2018;28(2):309-319. doi: 10.1080/10543406.2017.1293077. Epub 2017 Mar 21.

Abstract

We examine three variations of the regularization methods for response-adaptive randomization (RAR) and compare their operating characteristics. A power transformation (PT) is applied to refine the randomization probability. The clip method is used to bound the randomization probability within specified limits. A burn-in period of equal randomization (ER) can be added before adaptive randomization (AR). For each method, more patients are assigned to the superior arm and overall response rate increase as the scheme approximates simple AR, while statistical power increases as it approximates ER. We evaluate the performance of the three methods by varying the tuning parameter to control the extent of AR to achieve the same statistical power. When there is no early stopping rule, PT method generally performed the best in yielding higher proportion to the superior arm and higher overall response rate, but with larger variability. The burn-in method showed smallest variability compared with the clip method and the PT method. With the efficacy early stopping rule, all three methods performed more similarly. The PT and clip methods are better than the burn-in method in achieving higher proportion randomized to the superior arm and higher overall response rate but burn-in method required fewer patients in the trial. By carefully choosing the method and the tuning parameter, RAR methods can be tailored to strike a balance between achieving the desired statistical power and enhancing the overall response rate.

摘要

我们研究了响应自适应随机化(RAR)正则化方法的三种变体,并比较了它们的操作特性。应用幂变换(PT)来优化随机化概率。使用剪辑方法将随机化概率限制在指定范围内。在自适应随机化(AR)之前可以添加一个等随机化(ER)的预热期。对于每种方法,随着方案接近简单AR,更多患者被分配到优效组且总体缓解率提高,而随着接近ER,统计功效增加。我们通过改变调整参数来控制AR的程度以实现相同的统计功效,从而评估这三种方法的性能。当没有早期停止规则时,PT方法通常在将更高比例的患者分配到优效组和获得更高的总体缓解率方面表现最佳,但变异性较大。与剪辑方法和PT方法相比,预热方法的变异性最小。在有效率早期停止规则下,所有三种方法的表现更为相似。PT和剪辑方法在将更高比例的患者随机分配到优效组和获得更高的总体缓解率方面优于预热方法,但预热方法在试验中所需的患者较少。通过仔细选择方法和调整参数,可以对RAR方法进行调整,以在实现所需的统计功效和提高总体缓解率之间取得平衡。

相似文献

本文引用的文献

2
Commentary on Hey and Kimmelman.关于海伊和金梅尔曼的评论
Clin Trials. 2015 Apr;12(2):110-2. doi: 10.1177/1740774514568875. Epub 2015 Feb 3.
3
Rejoinder.反驳;回应
Clin Trials. 2015 Apr;12(2):125-7. doi: 10.1177/1740774515569014. Epub 2015 Feb 3.
4
Are outcome-adaptive allocation trials ethical?结果适应性分配试验是否符合伦理道德?
Clin Trials. 2015 Apr;12(2):102-6. doi: 10.1177/1740774514563583. Epub 2015 Feb 3.
6
Worth adapting? Revisiting the usefulness of outcome-adaptive randomization.值得改编吗?重新审视结果适应性随机化的有用性。
Clin Cancer Res. 2012 Sep 1;18(17):4498-507. doi: 10.1158/1078-0432.CCR-11-2555. Epub 2012 Jul 2.
7
Adaptive randomization for clinical trials.临床试验的适应性随机化
J Biopharm Stat. 2012;22(4):719-36. doi: 10.1080/10543406.2012.676535.
8
The BATTLE trial: personalizing therapy for lung cancer.BATTLE 试验:为肺癌患者实施个体化治疗。
Cancer Discov. 2011 Jun;1(1):44-53. doi: 10.1158/2159-8274.CD-10-0010. Epub 2011 Jun 1.
9
Outcome--adaptive randomization: is it useful?结局适应性随机化:它有用吗?
J Clin Oncol. 2011 Feb 20;29(6):771-6. doi: 10.1200/JCO.2010.31.1423. Epub 2010 Dec 20.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验