Ghosh Rik, Chakraborty Bibhas, Nahum-Shani Inbal, Patrick Megan E, Ghosh Palash
Department of Mathematics, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India.
Centre for Quantitative Medicine, Duke-NUS Medical School, National University of Singapore, Singapore 169857, Singapore.
Biometrics. 2024 Oct 3;80(4). doi: 10.1093/biomtc/ujae140.
In a sequential multiple-assignment randomized trial (SMART), a sequence of treatments is given to a patient over multiple stages. In each stage, randomization may be done to allocate patients to different treatment groups. Even though SMART designs are getting popular among clinical researchers, the methodologies for adaptive randomization at different stages of a SMART are few and not sophisticated enough to handle the complexity of optimal allocation of treatments at every stage of a trial. Lack of optimal allocation methodologies can raise critical concerns about SMART designs from an ethical point of view. In this work, we develop an optimal adaptive allocation procedure using a constrained optimization that minimizes the total expected number of treatment failures for a SMART with a binary primary outcome, subject to a fixed asymptotic variance of a predefined objective function. Issues related to optimal adaptive allocations are explored theoretically with supporting simulations. The applicability of the proposed methodology is demonstrated using a recently conducted SMART study named M-bridge for developing universal and resource-efficient dynamic treatment regimes for incoming first-year college students as a bridge to desirable treatments to address alcohol-related risks.
在序贯多重分配随机试验(SMART)中,一系列治疗会在多个阶段给予患者。在每个阶段,可以进行随机化以将患者分配到不同的治疗组。尽管SMART设计在临床研究人员中越来越受欢迎,但SMART不同阶段的自适应随机化方法很少,而且不够成熟,无法处理试验每个阶段治疗最优分配的复杂性。从伦理角度来看,缺乏最优分配方法可能会引发对SMART设计的严重担忧。在这项工作中,我们使用约束优化开发了一种最优自适应分配程序,该程序在预定义目标函数的固定渐近方差约束下,将具有二元主要结局的SMART的总预期治疗失败次数最小化。通过支持性模拟从理论上探讨了与最优自适应分配相关的问题。使用最近进行的一项名为M-桥的SMART研究证明了所提出方法的适用性,该研究旨在为即将入学 的一年级大学生开发通用且资源高效的动态治疗方案,作为通向解决与酒精相关风险的理想治疗的桥梁。