Suppr超能文献

用于肺癌靶向治疗开发的贝叶斯适应性设计——迈向个性化医疗的一步。

Bayesian adaptive design for targeted therapy development in lung cancer--a step toward personalized medicine.

作者信息

Zhou Xian, Liu Suyu, Kim Edward S, Herbst Roy S, Lee J Jack

机构信息

Department of Biostatistics, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA.

出版信息

Clin Trials. 2008;5(3):181-93. doi: 10.1177/1740774508091815.

Abstract

BACKGROUND

With the advancement in biomedicine, many biologically targeted therapies have been developed. These targeted agents, however, may not work for everyone. Biomarker profiles can be used to identify effective targeted therapies. Our goals are to characterize the molecular signature of individual tumors, offer the best-fit targeted therapies to patients in a study, and identify promising agents for future development.

METHODS

We propose an outcome-based adaptive randomization trial design for patients with advanced stage non-small cell lung cancer. All patients have baseline biopsy samples taken for biomarker assessment prior to randomization to treatments. The primary endpoint of this study is the disease control rate at 8 weeks after randomization. The Bayesian probit model is used to characterize the disease control rate. Patients are adaptively randomized to one of four treatments with the randomization rate based on the updated disease control rate from the accumulated data in the trial. For each biomarker profile, high-performing treatments have higher randomization rates, and vice versa. An early stopping rule is implemented to suspend low-performing treatments from randomization.

RESULTS

Based on extensive simulation studies, with a total of 200 evaluable patients, our trial has desirable operating characteristics to: (1) identify effective agents with a high probability; (2) suspend ineffective agents; and (3) treat more patients with effective agents that correspond to their biomarker profiles. Our trial design continues to update and refine the estimates as the trial progresses.

LIMITATIONS

This biomarker-based trial requires biopsible tumors and a two-week turn around time for biomarker profiling before randomization. Additionally, in order to learn from the interim data and adjust the randomization rate accordingly, the outcome-based adaptive randomization design is applicable only for trials when the endpoint can be assessed in a relative short period of time.

CONCLUSION

Bayesian adaptive randomization trial design is a smart, novel, and ethical design. In conjunction with an early stopping rule, it can be used to efficiently identify effective agents, eliminate ineffective ones, and match effective treatments with patients' biomarker profiles. The proposed design is suitable for the development of targeted therapies and provides a rational design for personalized medicine.

摘要

背景

随着生物医学的进步,已开发出许多生物靶向疗法。然而,这些靶向药物并非对所有人都有效。生物标志物谱可用于识别有效的靶向疗法。我们的目标是表征个体肿瘤的分子特征,为研究中的患者提供最适合的靶向疗法,并识别有前景的药物以供未来开发。

方法

我们为晚期非小细胞肺癌患者提出了一种基于结果的适应性随机试验设计。所有患者在随机分组接受治疗前均采集基线活检样本进行生物标志物评估。本研究的主要终点是随机分组后8周的疾病控制率。贝叶斯概率模型用于表征疾病控制率。患者根据试验中累积数据更新后的疾病控制率,被适应性随机分配到四种治疗方法之一。对于每种生物标志物谱,表现优异的治疗方法具有更高的随机分配率,反之亦然。实施早期终止规则以暂停随机分配表现不佳的治疗方法。

结果

基于广泛的模拟研究,在总共200名可评估患者的情况下,我们的试验具有理想的操作特性,能够:(1)高概率地识别有效药物;(2)暂停无效药物;(3)用与患者生物标志物谱相对应的有效药物治疗更多患者。随着试验的进行,我们的试验设计会持续更新和完善估计值。

局限性

这种基于生物标志物的试验需要可活检的肿瘤,并且在随机分组前进行生物标志物分析需要两周的周转时间。此外,为了从期中数据中学习并相应地调整随机分配率,基于结果的适应性随机设计仅适用于终点可在相对较短时间内评估的试验。

结论

贝叶斯适应性随机试验设计是一种明智、新颖且符合伦理的设计。结合早期终止规则,它可用于有效识别有效药物,淘汰无效药物,并使有效治疗方法与患者的生物标志物谱相匹配。所提出的设计适用于靶向疗法的开发,并为个性化医疗提供了合理的设计。

相似文献

2
Bayesian adaptive randomization designs for targeted agent development.
Clin Trials. 2010 Oct;7(5):584-96. doi: 10.1177/1740774510373120. Epub 2010 Jun 22.
3
Bayesian clinical trials at The University of Texas MD Anderson Cancer Center: An update.
Clin Trials. 2019 Dec;16(6):645-656. doi: 10.1177/1740774519871471. Epub 2019 Aug 26.
4
Clinical trial designs for testing biomarker-based personalized therapies.
Clin Trials. 2012 Apr;9(2):141-54. doi: 10.1177/1740774512437252. Epub 2012 Mar 7.
7
An overview of the design and conduct of the BATTLE trials.
Chin Clin Oncol. 2015 Sep;4(3):33. doi: 10.3978/j.issn.2304-3865.2015.06.07.
8
A Bayesian adaptive design with biomarkers for targeted therapies.
Clin Trials. 2010 Oct;7(5):546-56. doi: 10.1177/1740774510372657. Epub 2010 Jun 22.
9
Bayesian two-step Lasso strategy for biomarker selection in personalized medicine development for time-to-event endpoints.
Contemp Clin Trials. 2013 Nov;36(2):642-50. doi: 10.1016/j.cct.2013.09.009. Epub 2013 Sep 25.
10
Bayesian Two-stage Biomarker-based Adaptive Design for Targeted Therapy Development.
Stat Biosci. 2016 Jun;8(1):99-128. doi: 10.1007/s12561-014-9124-2. Epub 2014 Dec 4.

引用本文的文献

1
Using Bayesian statistics in confirmatory clinical trials in the regulatory setting: a tutorial review.
BMC Med Res Methodol. 2024 May 7;24(1):110. doi: 10.1186/s12874-024-02235-0.
2
Approximating the Operating Characteristics of Bayesian Uncertainty Directed Trial Designs.
J Stat Plan Inference. 2022 Dec;221:90-99. doi: 10.1016/j.jspi.2022.03.001. Epub 2022 Mar 23.
3
Simulation study for evaluating an adaptive-randomisation Bayesian hybrid trial design with enrichment.
Contemp Clin Trials Commun. 2023 Apr 14;33:101141. doi: 10.1016/j.conctc.2023.101141. eCollection 2023 Jun.
4
Application of Bayesian approaches in drug development: starting a virtuous cycle.
Nat Rev Drug Discov. 2023 Mar;22(3):235-250. doi: 10.1038/s41573-023-00638-0. Epub 2023 Feb 15.
6
Challenges, opportunities, and innovative statistical designs for precision oncology trials.
Ann Transl Med. 2022 Sep;10(18):1038. doi: 10.21037/atm-22-356.
7
Some performance considerations when using multi-armed bandit algorithms in the presence of missing data.
PLoS One. 2022 Sep 12;17(9):e0274272. doi: 10.1371/journal.pone.0274272. eCollection 2022.
8
Clinical trial design in the era of precision medicine.
Genome Med. 2022 Aug 31;14(1):101. doi: 10.1186/s13073-022-01102-1.
9
Multi-arm covariate-adaptive randomization.
Sci China Math. 2023;66(1):163-190. doi: 10.1007/s11425-020-1954-y. Epub 2022 Jul 21.

本文引用的文献

2
Adaptive trial design.
Clin Adv Hematol Oncol. 2007 Jul;5(7):522-4.
3
Drug development in oncology: classical cytotoxics and molecularly targeted agents.
Br J Clin Pharmacol. 2006 Jul;62(1):15-26. doi: 10.1111/j.1365-2125.2006.02713.x.
4
Bayesian clinical trials.
Nat Rev Drug Discov. 2006 Jan;5(1):27-36. doi: 10.1038/nrd1927.
5
Clinical trials design and treatment tailoring: general principles applied to breast cancer research.
Crit Rev Oncol Hematol. 2006 Aug;59(2):98-105. doi: 10.1016/j.critrevonc.2005.11.003. Epub 2006 Jan 20.
6
Introduction to Bayesian methods III: use and interpretation of Bayesian tools in design and analysis.
Clin Trials. 2005;2(4):295-300; discussion 301-4, 364-78. doi: 10.1191/1740774505cn100oa.
7
Introduction to Bayesian methods II: fundamental concepts.
Clin Trials. 2005;2(4):291-4; discussion 301-4, 364-78. doi: 10.1191/1740774505cn099oa.
8
Introduction to Bayesian methods I: measuring the strength of evidence.
Clin Trials. 2005;2(4):282-90; discussion 301-4, 364-78. doi: 10.1191/1740774505cn098oa.
9
Randomized phase II designs in cancer clinical trials: current status and future directions.
J Clin Oncol. 2005 Jul 1;23(19):4450-7. doi: 10.1200/JCO.2005.03.197.
10
Unique issues in the development of "targeted" antineoplastic pharmaceutical agents.
Curr Oncol Rep. 2005 Jul;7(4):235-6. doi: 10.1007/s11912-005-0043-8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验