Assal Mathieu, Dalmau-Pastor Miki, Ray Adrien, Stern Richard
*Center for Surgery of the Foot and Ankle, Hirslanden Clinique La Colline, Geneva, Switzerland; †Faculté de Médecine, University of Geneva Medical Center, Geneva, Switzerland; ‡Laboratory of Arthroscopic and Surgical Anatomy, Human and Embryologic Anatomy Unit, Department of Pathology and Experimental Therapeutics, School of Medicine, University of Barcelona, Barcelona, Spain; §Faculty of Health Sciences at Manresa, University of Vic-Central University of Catalonia, Manresa, Barcelona, Spain; and ‖Division of Orthopaedics and Trauma Surgery, University Hospitals of Geneva, Geneva, Switzerland.
J Orthop Trauma. 2017 Apr;31(4):e127-e129. doi: 10.1097/BOT.0000000000000774.
Our objective is to review the anatomy and exposure of the posterior column and posterior tibial malleolus (the posterior tibial plafond) by defining the access corridors through 3 different approaches-posteromedial, posterolateral, and modified posteromedial.
Cadaveric dissection with percentage of posterior tibial malleolus exposed, and strain gauge measurements to evaluate traction on the neurovascular bundle.
The 3 different approaches are applicable for exposure of different portions of the distal posterior tibial malleolus. Strain gauge measurements reveal the least traction on the flap containing the neurovascular bundle with the modified posteromedial approach (7.0 N) compared with the posteromedial (21.5 N) and posterolateral (16.8 N) approaches. Exposure of the posterior tibial malleolus was greater with the modified posteromedial approach (91%) compared with the other 2 approaches (posteromedial = 64%, posterolateral = 40%).
Depending on the location of the principal fracture fragments, particularly in high energy ankle and pilon fractures, each of the posterior approaches has its indication, with the modified posteromedial approach revealing more of the posterior anatomy than the other 2 approaches. The latter approach places the least traction on the flap containing the neurovascular bundle.
我们的目的是通过定义经3种不同入路——后内侧、后外侧和改良后内侧入路的通道,来评估后柱及后踝(胫后穹窿)的解剖结构及显露情况。
进行尸体解剖,测量后踝的显露百分比,并使用应变片测量来评估对神经血管束的牵拉。
3种不同入路适用于显露胫后踝远端的不同部分。应变片测量显示,与后内侧入路(21.5 N)和后外侧入路(16.8 N)相比,改良后内侧入路对包含神经血管束的皮瓣的牵拉最小(7.0 N)。改良后内侧入路对后踝的显露程度(91%)高于其他两种入路(后内侧 = 64%,后外侧 = 40%)。
根据主要骨折块的位置,特别是在高能型踝关节和Pilon骨折中,每种后入路都有其适应证,改良后内侧入路比其他两种入路能显露更多的后部解剖结构。后一种入路对包含神经血管束的皮瓣的牵拉最小。