Thin Film Physics Laboratory, Department of Physics, Shivaji University, Kolhapur 416 004, MS, India.
Department of Electronics and Computer Engineering, Chonnam National University, 300 Yongbong-Dong, Puk-Gu, Gwangju 500-757, South Korea.
J Colloid Interface Sci. 2017 Jul 15;498:202-209. doi: 10.1016/j.jcis.2017.03.013. Epub 2017 Mar 3.
The mesoporous nanostructured metal oxides have a lot of capabilities to upsurge the energy storing capacity of the supercapacitor. In present work, different nanostructured morphologies of MnO have been successfully fabricated on flexible carbon cloth by simple but capable hydrothermal method at different deposition temperatures. The deposition temperature has strong influence on reaction kinetics, which subsequently alters the morphology and electrochemical performance. Among different nanostructured MnO thin films, the mesoporous weirds composed thin film obtained at temperature of 453K exhibits excellent physical and electrochemical features for supercapacitor application. The weirds composed MnO thin film exhibits specific surface area of 109mg, high specific capacitance of 595Fg with areal capacitance of 4.16Fcm at a scan rate of 5mVs and high specific energy of 56.32Whkg. In addition to this, MnO weirds attain capacity retention of 87 % over 2000 CV cycles, representing better cycling stability. The enhanced electrochemical performance could be ascribed to direct growth of highly porous MnO weirds on carbon cloth which provide more pathways for easy diffusion of electrolyte into the interior of electroactive material. The as-fabricated electrode with improved performance could be ascribed as a potential electrode material for energy storage devices.
介孔纳米结构金属氧化物具有提高超级电容器储能能力的多种能力。在目前的工作中,通过简单但有效的水热法,在不同的沉积温度下,成功地在柔性碳纤维布上制备了不同纳米结构形态的 MnO。沉积温度对反应动力学有很强的影响,进而改变了形态和电化学性能。在不同的纳米结构 MnO 薄膜中,在 453K 温度下获得的具有奇异形态的介孔复合薄膜在超级电容器应用方面表现出优异的物理和电化学性能。奇异形态的 MnO 薄膜具有 109mg 的比表面积、在 5mVs 的扫描速率下具有 595Fg 的比电容和 4.16Fcm 的面电容以及 56.32Whkg 的高比能量。此外,MnO 奇异形态在 2000 次 CV 循环后保持 87%的容量保持率,表现出更好的循环稳定性。电化学性能的提高可以归因于高度多孔的 MnO 奇异形态在碳纤维布上的直接生长,这为电解质更容易扩散到活性材料内部提供了更多的途径。具有改进性能的制备电极可以归因于储能器件的潜在电极材料。