Suppr超能文献

对展开蛋白质中库恩障碍摩擦机制的理论和计算验证。

Theoretical and computational validation of the Kuhn barrier friction mechanism in unfolded proteins.

机构信息

Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, Texas, 78712, USA.

Leibniz Institute for Solid State and Materials Research (IFW Dresden), Helmholtzstraße 20, 01069, Dresden, Germany.

出版信息

Sci Rep. 2017 Mar 21;7(1):269. doi: 10.1038/s41598-017-00287-5.

Abstract

A long time ago, Kuhn predicted that long polymers should approach a limit where their global motion is controlled by solvent friction alone, with ruggedness of their energy landscapes having no consequences for their dynamics. In contrast, internal friction effects are important for polymers of modest length. Internal friction in proteins, in particular, affects how fast they fold or find their binding targets and, as such, has attracted much recent attention. Here we explore the molecular origins of internal friction in unfolded proteins using atomistic simulations, coarse-grained models and analytic theory. We show that the characteristic internal friction timescale is directly proportional to the timescale of hindered dihedral rotations within the polypeptide chain, with a proportionality coefficient b that is independent of the chain length. Such chain length independence of b provides experimentally testable evidence that internal friction arises from concerted, crankshaft-like dihedral rearrangements. In accord with phenomenological models of internal friction, we find the global reconfiguration timescale of a polypeptide to be the sum of solvent friction and internal friction timescales. At the same time, the time evolution of inter-monomer distances within polypeptides deviates both from the predictions of those models and from a simple, one-dimensional diffusion model.

摘要

很久以前,库恩就曾预测,长链聚合物的整体运动应该会达到这样一个极限,即仅由溶剂摩擦来控制,其能量景观的崎岖程度对其动力学没有任何影响。相比之下,中等长度的聚合物的内部摩擦效应更为重要。蛋白质中的内部摩擦尤其会影响其折叠或找到其结合靶标的速度,因此最近引起了广泛关注。在这里,我们使用原子模拟、粗粒化模型和分析理论来探索无规线团状态下蛋白质内部摩擦的分子起源。我们表明,特征内部摩擦时间尺度与多肽链内受阻二面角旋转的时间尺度成正比,比例系数 b 与链长无关。这种 b 的与链长无关为内部摩擦源自协同的、曲柄式二面角重排提供了可实验验证的证据。与内部摩擦的唯象模型一致,我们发现多肽的全局重构时间尺度是溶剂摩擦和内部摩擦时间尺度的总和。同时,多肽内单体间距离的时间演化既不符合这些模型的预测,也不符合简单的一维扩散模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4325/5428071/ce5dce9577d2/41598_2017_287_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验