Suppr超能文献

通过血红蛋白A1血细胞的计算机模拟糖基化实现数字医疗保健

Digital Health Care by In Silico Glycation of HbA1 Blood Cells.

作者信息

Minor James M, Rickey Leslie M, Bergenstal Richard M

机构信息

1 Newark, DE, USA.

2 Yale School of Medicine, New Haven, CT, USA.

出版信息

J Diabetes Sci Technol. 2017 Sep;11(5):975-979. doi: 10.1177/1932296817700920. Epub 2017 Mar 22.

Abstract

BACKGROUND

Diabetes health care relies on the HbA1c (A1c) assay and associated average glucose (AG) to evaluate and control chronic glycemia. However, the A1c assay is plagued with significant noise, lag time, and specificity issues. Current studies support the significant health care advantage of clinical action based on real-time blood glucose (BG) metrics. We seek to improve diabetes management by directly relating such metrics to AG levels as mediated by recently discovered recurrent endocrine cycles.

METHODS

Several studies collected multiple months of BG data on 111 subjects totaling 261 893 CGM measurements and 29 278 meter readings. These data are a rich source of multiday metrics in terms of the CGM and SMBG daily profiles. The recurrent endocrine patterns expose key metric relationships for monitoring AG related to A1c using CGM and SMBG data. Consequently, day-to-day tracking of AG is expressed as a simple two-parameter function of fasting BG for all studies.

RESULTS

Consequently, when applied to 2518 qualified days of 64 subjects, the function predicts daily AG values with 2% relative standard error. All studies produced compatible results. By restricting one parameter to a constant, the error increased to 3%.

CONCLUSIONS

The recurrent endocrine patterns revealed a persistent structure hidden within the multiday fluctuations that becomes a simple meter-compatible equation that accurately measures real-time trending of AG using fasting BG values. This enables a digital health monitoring service and self-monitoring device that reveals immediate disease progression as well as the impact of interventions and medications better than possible with the A1c assay.

摘要

背景

糖尿病医疗保健依赖糖化血红蛋白(HbA1c,A1c)检测及相关平均血糖(AG)来评估和控制慢性血糖水平。然而,A1c检测存在显著的噪声、延迟时间和特异性问题。当前研究支持基于实时血糖(BG)指标进行临床干预所具有的显著医疗保健优势。我们试图通过将此类指标与最近发现的反复出现的内分泌周期所介导的AG水平直接关联,来改善糖尿病管理。

方法

多项研究收集了111名受试者数月的BG数据,共计261893次连续血糖监测(CGM)测量值和29278次血糖仪读数。就CGM和自我血糖监测(SMBG)的每日概况而言,这些数据是多日指标的丰富来源。反复出现的内分泌模式揭示了利用CGM和SMBG数据监测与A1c相关的AG的关键指标关系。因此,在所有研究中,AG的日常追踪都表示为空腹血糖的一个简单双参数函数。

结果

因此,当将该函数应用于64名受试者的2518个合格日时,其预测每日AG值的相对标准误差为2%。所有研究都得出了一致的结果。若将其中一个参数设为常数,误差会增至3%。

结论

反复出现的内分泌模式揭示了隐藏在多日波动中的一种持久结构,该结构成为一个简单的与血糖仪兼容的方程,可利用空腹血糖值准确测量AG的实时趋势。这使得一种数字健康监测服务和自我监测设备成为可能,其能比A1c检测更好地揭示疾病的即时进展以及干预措施和药物的影响。

相似文献

1
Digital Health Care by In Silico Glycation of HbA1 Blood Cells.通过血红蛋白A1血细胞的计算机模拟糖基化实现数字医疗保健
J Diabetes Sci Technol. 2017 Sep;11(5):975-979. doi: 10.1177/1932296817700920. Epub 2017 Mar 22.
5
Beyond HbA1c.超越糖化血红蛋白。
J Diabetes. 2017 Dec;9(12):1052-1053. doi: 10.1111/1753-0407.12590. Epub 2017 Sep 13.

引用本文的文献

1
Evaluating Interventions and Titrations Using Fasting Blood Glucose.使用空腹血糖评估干预措施和滴定法。
J Diabetes Sci Technol. 2018 Jan;12(1):226-227. doi: 10.1177/1932296817718340. Epub 2017 Jul 5.

本文引用的文献

1
Recurrent Endocrine Cycles.复发性内分泌周期
J Diabetes Sci Technol. 2016 Jul;10(4):981-984. doi: 10.1177/1932296816637622.
5
Continuous glucose monitoring and intensive treatment of type 1 diabetes.1型糖尿病的持续血糖监测与强化治疗
N Engl J Med. 2008 Oct 2;359(14):1464-76. doi: 10.1056/NEJMoa0805017. Epub 2008 Sep 8.
9
Tests of glycemia in diabetes.糖尿病患者的血糖检测
Diabetes Care. 2004 Jul;27(7):1761-73. doi: 10.2337/diacare.27.7.1761.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验