Suppr超能文献

通过使用田口设计实验方法优化物理化学参数,提高来自地下芽孢杆菌RL-2a MTCC 11502的耐热酰胺酶产量。

Enhanced production of thermostable amidase from Geobacillus subterraneus RL-2a MTCC 11502 via optimization of physicochemical parameters using Taguchi DOE methodology.

作者信息

Mehta Praveen Kumar, Bhatia Shashi Kant, Bhatia Ravi Kant, Bhalla Tek Chand

机构信息

Department of Biotechnology, Himachal Pradesh University, Simla, 171 005, India.

出版信息

3 Biotech. 2016 Jun;6(1):66. doi: 10.1007/s13205-016-0390-1. Epub 2016 Feb 15.

Abstract

The specific effect of chemical and physical factors on amidase production from Geobacillus subterraneus RL-2a was investigated using design of experiments (DOE) methodology. The one-factor-at-a-time (OFAT) method was used to study the effects of carbon and nitrogen sources on amidase production. Subsequently, optimal levels of physical parameters and key media components, namely temperature, pH, sucrose, KHPO, NaCl, yeast, CaCl·2HO and MgSO·7HO, were determined using the Taguchi orthogonal array (OA) experimental design (DOE) methodology. Taguchi method based on three levels with a OA layout of L18 (2 × 3) with eight most influential factors on amidase synthesis for the proposed experimental design. Analysis of variance was performed on the obtained results and optimum condition suggested by statistical calculations was tested in a verification test. An increase of 169.56 % in amidase production compared to the unoptimized conditions was observed and the conversion of isonicotinamide was significantly improved after performing optimization techniques, including OFAT and Taguchi method. The result indicated that Taguchi method was effective in optimizing the culture conditions of amidase production.

摘要

采用实验设计(DOE)方法研究了化学和物理因素对地下芽孢杆菌RL-2a产酰胺酶的具体影响。采用一次单因素(OFAT)方法研究了碳源和氮源对酰胺酶产生的影响。随后,使用田口正交阵列(OA)实验设计(DOE)方法确定了物理参数和关键培养基成分的最佳水平,即温度、pH值、蔗糖、KHPO、NaCl、酵母、CaCl·2HO和MgSO·7HO。基于田口方法,采用L18(2×3)的OA布局,对所提出的实验设计中影响酰胺酶合成的八个最具影响力的因素进行了三个水平的设置。对所得结果进行方差分析,并在验证试验中测试了统计计算建议的最佳条件。与未优化条件相比,酰胺酶产量提高了169.56%,在采用包括OFAT和田口方法在内的优化技术后,异烟酰胺的转化率显著提高。结果表明,田口方法在优化酰胺酶生产的培养条件方面是有效的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e3d/4754296/8edadeae775a/13205_2016_390_Fig1_HTML.jpg

相似文献

2
Purification and characterization of a novel thermo-active amidase from Geobacillus subterraneus RL-2a.
Extremophiles. 2013 Jul;17(4):637-48. doi: 10.1007/s00792-013-0547-3. Epub 2013 May 26.
3
Inulinase production by Geotrichum candidum OC-7 using migratory locusts as a new substrate and optimization process with Taguchi DOE.
Toxicol Ind Health. 2013 Sep;29(8):704-10. doi: 10.1177/0748233712442737. Epub 2012 Apr 10.
5
Optimization of laccase production by Pleurotus ostreatus IMI 395545 using the Taguchi DOE methodology.
J Basic Microbiol. 2010 Dec;50(6):548-56. doi: 10.1002/jobm.201000095.
8
Enhanced production of amidase from Rhodococcus erythropolis MTCC 1526 by medium optimisation using a statistical experimental design.
J Ind Microbiol Biotechnol. 2009 May;36(5):671-8. doi: 10.1007/s10295-009-0536-9. Epub 2009 Feb 17.
9
Utilization of Leek (Allium ampeloprasum var. porrum) for inulinase production.
Prep Biochem Biotechnol. 2015 Aug 18;45(6):596-604. doi: 10.1080/10826068.2014.940538.
10
Chitosan production by psychrotolerant Rhizopus oryzae in non-sterile open fermentation conditions.
Int J Biol Macromol. 2016 Aug;89:428-33. doi: 10.1016/j.ijbiomac.2016.05.007. Epub 2016 May 3.

引用本文的文献

1
MTCC 13131: An Amide-Hydrolyzing Thermophilic Bacterium Isolated from a Hot Spring of Manikaran.
Indian J Microbiol. 2022 Dec;62(4):618-626. doi: 10.1007/s12088-022-01042-9. Epub 2022 Oct 21.
2
Development of effective biotransformation process for benzohydroxamic acid production using IIIMB2907.
3 Biotech. 2022 Feb;12(2):44. doi: 10.1007/s13205-022-03109-2. Epub 2022 Jan 15.
5
Optimization and partial characterization of intracellular anticandidal protein from Aspergillus giganteus MTCC 8408 using taguchi DOE.
Bioengineered. 2017 Sep 3;8(5):536-548. doi: 10.1080/21655979.2016.1264539. Epub 2017 Jan 19.

本文引用的文献

1
Purification and characterization of a novel thermo-active amidase from Geobacillus subterraneus RL-2a.
Extremophiles. 2013 Jul;17(4):637-48. doi: 10.1007/s00792-013-0547-3. Epub 2013 May 26.
2
Enhanced production of amidase from Rhodococcus erythropolis MTCC 1526 by medium optimisation using a statistical experimental design.
J Ind Microbiol Biotechnol. 2009 May;36(5):671-8. doi: 10.1007/s10295-009-0536-9. Epub 2009 Feb 17.
7
A novel thermostable nitrilase superfamily amidase from Geobacillus pallidus showing acyl transfer activity.
Appl Microbiol Biotechnol. 2007 Jun;75(4):801-11. doi: 10.1007/s00253-007-0883-2. Epub 2007 Mar 9.
8
Expression and purification of a recombinant enantioselective amidase.
Protein Expr Purif. 2005 Mar;40(1):190-6. doi: 10.1016/j.pep.2004.12.020.
9
Purification and properties of an enantioselective and thermoactive amidase from the thermophilic actinomycete Pseudonocardia thermophila.
Appl Microbiol Biotechnol. 2004 Jul;65(1):38-45. doi: 10.1007/s00253-004-1607-5. Epub 2004 Apr 21.
10
A rapid and precise method for the determination of urea.
J Clin Pathol. 1960 Mar;13(2):156-9. doi: 10.1136/jcp.13.2.156.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验