Suppr超能文献

利用神经网络方法覆盖所有现有纳米尺寸金属氧化物细胞毒性的预测。

The way to cover prediction for cytotoxicity for all existing nano-sized metal oxides by using neural network method.

机构信息

a Department of Chemoinformatics , National Institute of Chemistry , Ljubljana , Slovenia.

b Laboratory of Environmental Chemometrics, Faculty of Chemistry , University of Gdansk , Gdańsk , Poland.

出版信息

Nanotoxicology. 2017 May;11(4):475-483. doi: 10.1080/17435390.2017.1310949. Epub 2017 Apr 12.

Abstract

The regulatory agencies should fulfil the data gap in toxicity for new chemicals including nano-sized compounds, like metal oxides nanoparticles (MeO NPs) according to the registration, evaluation, authorisation and restriction of chemicals (REACH) legislation policy. This study demonstrates the perspective capability of neural network models for prediction of cytotoxicity of MeO NPs to bacteria Escherichia coli (E. coli) for the widest range of metal oxides extracted from Periodic table. The counter propagation artificial neural network (CP ANN) models for prediction of cytotoxicity of MeO NPs for data sets of 17, 36 and 72 metal oxides were employed in the study. The cytotoxicity of studied metal oxide NPs was correlated with (i) χ-metal electronegativity (EN) by Pauling scale and composition of metal oxides characterised by (ii) number of metal atoms in oxide, (iii) number of oxygen atoms in oxide and (iv) charge of metal cation in oxide. The paper describes the models in context of five OECD principles of validation models accepted for regulatory use. The recommendations were done for the minimal number of cytotoxicity tests needs for evaluation of the large set of MeO with different oxidation states. The methodology is expected to be useful for potential hazard assessment of MeO NPs and prioritisation for further testing and risk assessment.

摘要

监管机构应根据化学品注册、评估、授权和限制(REACH)法规政策,填补新化学物质(包括纳米级化合物,如金属氧化物纳米颗粒(MeO NPs))的毒性数据空白。本研究展示了神经网络模型对从元素周期表中提取的最广泛的金属氧化物的 MeO NPs 对细菌大肠杆菌(E. coli)的细胞毒性进行预测的潜力。研究中使用了反向传播人工神经网络(CP ANN)模型来预测 17、36 和 72 种金属氧化物数据集的 MeO NPs 的细胞毒性。研究中,将所研究的金属氧化物 NPs 的细胞毒性与(i)Pauling 标度的金属 χ 电负性(EN)和金属氧化物的组成(ii)氧化物中金属原子的数量、(iii)氧化物中氧原子的数量和(iv)氧化物中金属阳离子的电荷相关联。本文在五个 OECD 验证模型原则的背景下描述了这些模型,这些原则被接受用于监管用途。该研究为评估具有不同氧化态的大量 MeO 所需的最小数量的细胞毒性测试提供了建议。该方法有望用于 MeO NPs 的潜在危害评估以及进一步测试和风险评估的优先级排序。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验