Suppr超能文献

多视图结构局部子空间跟踪

Multi-View Structural Local Subspace Tracking.

作者信息

Guo Jie, Xu Tingfa, Shi Guokai, Rao Zhitao, Li Xiangmin

机构信息

Image Engineering&Video Technology Lab, School of Optoelectronics, Beijing Institute of Technology, Beijing 100081, China.

Key Laboratory of Photoelectronic Imaging Technology and System, Ministry of Education of China, Beijing 100081, China.

出版信息

Sensors (Basel). 2017 Mar 23;17(4):666. doi: 10.3390/s17040666.

Abstract

In this paper, we propose a multi-view structural local subspace tracking algorithm based on sparse representation. We approximate the optimal state from three views: (1) the template view; (2) the PCA (principal component analysis) basis view; and (3) the target candidate view. Then we propose a unified objective function to integrate these three view problems together. The proposed model not only exploits the intrinsic relationship among target candidates and their local patches, but also takes advantages of both sparse representation and incremental subspace learning. The optimization problem can be well solved by the customized APG (accelerated proximal gradient) methods together with an iteration manner. Then, we propose an alignment-weighting average method to obtain the optimal state of the target. Furthermore, an occlusion detection strategy is proposed to accurately update the model. Both qualitative and quantitative evaluations demonstrate that our tracker outperforms the state-of-the-art trackers in a wide range of tracking scenarios.

摘要

在本文中,我们提出了一种基于稀疏表示的多视图结构局部子空间跟踪算法。我们从三个视图来近似最优状态:(1) 模板视图;(2) 主成分分析(PCA)基视图;以及(3) 目标候选视图。然后我们提出一个统一的目标函数将这三个视图问题整合在一起。所提出的模型不仅利用了目标候选及其局部块之间的内在关系,还利用了稀疏表示和增量子空间学习的优势。通过定制的加速近端梯度(APG)方法结合迭代方式可以很好地解决优化问题。然后,我们提出一种对齐加权平均方法来获得目标的最优状态。此外,还提出了一种遮挡检测策略来准确更新模型。定性和定量评估均表明,我们的跟踪器在广泛的跟踪场景中优于当前最先进的跟踪器。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a85c/5419779/2e689f649bec/sensors-17-00666-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验