Suppr超能文献

基于时空上下文学习的加权自适应局部稀疏表观模型的视觉跟踪。

Visual Tracking With Weighted Adaptive Local Sparse Appearance Model via Spatio-Temporal Context Learning.

出版信息

IEEE Trans Image Process. 2018 Sep;27(9):4478-4489. doi: 10.1109/TIP.2018.2839916.

Abstract

Sparse representation has been widely exploited to develop an effective appearance model for object tracking due to its well discriminative capability in distinguishing the target from its surrounding background. However, most of these methods only consider either the holistic representation or the local one for each patch with equal importance, and hence may fail when the target suffers from severe occlusion or large-scale pose variation. In this paper, we propose a simple yet effective approach that exploits rich feature information from reliable patches based on weighted local sparse representation that takes into account the importance of each patch. Specifically, we design a reconstruction-error based weight function with the reconstruction error of each patch via sparse coding to measure the patch reliability. Moreover, we explore spatio-temporal context information to enhance the robustness of the appearance model, in which the global temporal context is learned via incremental subspace and sparse representation learning with a novel dynamic template update strategy to update the dictionary, while the local spatial context considers the correlation between the target and its surrounding background via measuring the similarity among their sparse coefficients. Extensive experimental evaluations on two large tracking benchmarks demonstrate favorable performance of the proposed method over some state-of-the-art trackers.

摘要

稀疏表示由于其在区分目标与其周围背景方面具有良好的判别能力,因此被广泛用于开发有效的目标跟踪外观模型。然而,这些方法中的大多数仅考虑每个补丁的整体表示或局部表示,同等重要,因此当目标受到严重遮挡或大的姿态变化时,可能会失败。在本文中,我们提出了一种简单而有效的方法,该方法利用基于加权局部稀疏表示的可靠补丁中的丰富特征信息,考虑每个补丁的重要性。具体来说,我们设计了一种基于重构误差的权重函数,该函数通过稀疏编码来测量每个补丁的重构误差,以衡量补丁的可靠性。此外,我们还探索了时空上下文信息,以增强外观模型的鲁棒性,其中全局时空上下文通过增量子空间和稀疏表示学习来学习,具有新颖的动态模板更新策略来更新字典,而局部空间上下文则通过测量稀疏系数之间的相似性来考虑目标与其周围背景之间的相关性。在两个大型跟踪基准上的广泛实验评估表明,该方法优于一些最先进的跟踪器。

相似文献

3
Multi-View Structural Local Subspace Tracking.多视图结构局部子空间跟踪
Sensors (Basel). 2017 Mar 23;17(4):666. doi: 10.3390/s17040666.
5
Robust Object Tracking via Local Sparse Appearance Model.基于局部稀疏表观模型的鲁棒目标跟踪。
IEEE Trans Image Process. 2018 Oct;27(10):4958-4970. doi: 10.1109/TIP.2018.2848465.
6
Robust object tracking based on local discriminative sparse representation.基于局部判别稀疏表示的鲁棒目标跟踪
J Opt Soc Am A Opt Image Sci Vis. 2017 Apr 1;34(4):533-544. doi: 10.1364/JOSAA.34.000533.
7
Structure-Aware Local Sparse Coding for Visual Tracking.基于结构感知的局部稀疏编码视觉跟踪算法。
IEEE Trans Image Process. 2018 Aug;27(8):3857-3869. doi: 10.1109/TIP.2018.2797482.
9
Robust object tracking via sparse collaborative appearance model.基于稀疏协同表观模型的鲁棒目标跟踪。
IEEE Trans Image Process. 2014 May;23(5):2356-68. doi: 10.1109/TIP.2014.2313227.
10
Temporal Restricted Visual Tracking Via Reverse-Low-Rank Sparse Learning.基于反向低秩稀疏学习的时间受限视觉跟踪。
IEEE Trans Cybern. 2017 Feb;47(2):485-498. doi: 10.1109/TCYB.2016.2519532. Epub 2016 Feb 2.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验