Suppr超能文献

动态调制掩码稀疏跟踪

Dynamically Modulated Mask Sparse Tracking.

作者信息

Chen Zijing, You Xinge, Zhong Boxuan, Li Jun, Tao Dacheng

出版信息

IEEE Trans Cybern. 2017 Nov;47(11):3706-3718. doi: 10.1109/TCYB.2016.2577718. Epub 2016 Sep 7.

Abstract

Visual tracking is a critical task in many computer vision applications such as surveillance and robotics. However, although the robustness to local corruptions has been improved, prevailing trackers are still sensitive to large scale corruptions, such as occlusions and illumination variations. In this paper, we propose a novel robust object tracking technique depends on subspace learning-based appearance model. Our contributions are twofold. First, mask templates produced by frame difference are introduced into our template dictionary. Since the mask templates contain abundant structure information of corruptions, the model could encode information about the corruptions on the object more efficiently. Meanwhile, the robustness of the tracker is further enhanced by adopting system dynamic, which considers the moving tendency of the object. Second, we provide the theoretic guarantee that by adapting the modulated template dictionary system, our new sparse model can be solved by the accelerated proximal gradient algorithm as efficient as in traditional sparse tracking methods. Extensive experimental evaluations demonstrate that our method significantly outperforms 21 other cutting-edge algorithms in both speed and tracking accuracy, especially when there are challenges such as pose variation, occlusion, and illumination changes.

摘要

视觉跟踪在许多计算机视觉应用中都是一项关键任务,如监控和机器人技术。然而,尽管对局部损坏的鲁棒性有所提高,但主流跟踪器对大规模损坏(如遮挡和光照变化)仍然很敏感。在本文中,我们提出了一种基于子空间学习的外观模型的新型鲁棒目标跟踪技术。我们的贡献有两个方面。首先,通过帧差生成的掩码模板被引入到我们的模板字典中。由于掩码模板包含丰富的损坏结构信息,该模型可以更有效地编码关于目标上损坏的信息。同时,通过采用考虑目标运动趋势的系统动态性,跟踪器的鲁棒性进一步增强。其次,我们提供了理论保证,通过调整调制模板字典系统,我们的新稀疏模型可以像传统稀疏跟踪方法一样通过加速近端梯度算法高效求解。广泛的实验评估表明,我们的方法在速度和跟踪精度方面均显著优于其他21种前沿算法,尤其是在存在姿态变化、遮挡和光照变化等挑战的情况下。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验