Suppr超能文献

双着丝粒染色体中的着丝粒命运:来自人类2号染色体祖先着丝粒区域进化的新见解

Centromere Destiny in Dicentric Chromosomes: New Insights from the Evolution of Human Chromosome 2 Ancestral Centromeric Region.

作者信息

Chiatante Giorgia, Giannuzzi Giuliana, Calabrese Francesco Maria, Eichler Evan E, Ventura Mario

机构信息

Department of Biology, University of Bari "Aldo Moro", Bari, Italy.

Department of Biology, Anthropology Laboratories University of Florence, Florence, Italy.

出版信息

Mol Biol Evol. 2017 Jul 1;34(7):1669-1681. doi: 10.1093/molbev/msx108.

Abstract

Dicentric chromosomes are products of genomic rearrangements that place two centromeres on the same chromosome. Due to the presence of two primary constrictions, they are inherently unstable and overcome their instability by epigenetically inactivating and/or deleting one of the two centromeres, thus resulting in functionally monocentric chromosomes that segregate normally during cell division. Our understanding to date of dicentric chromosome formation, behavior and fate has been largely inferred from observational studies in plants and humans as well as artificially produced de novo dicentrics in yeast and in human cells. We investigate the most recent product of a chromosome fusion event fixed in the human lineage, human chromosome 2, whose stability was acquired by the suppression of one centromere, resulting in a unique difference in chromosome number between humans (46 chromosomes) and our most closely related ape relatives (48 chromosomes). Using molecular cytogenetics, sequencing, and comparative sequence data, we deeply characterize the relicts of the chromosome 2q ancestral centromere and its flanking regions, gaining insight into the ancestral organization that can be easily broadened to all acrocentric chromosome centromeres. Moreover, our analyses offered the opportunity to trace the evolutionary history of rDNA and satellite III sequences among great apes, thus suggesting a new hypothesis for the preferential inactivation of some human centromeres, including IIq. Our results suggest two possible centromere inactivation models to explain the evolutionarily stabilization of human chromosome 2 over the last 5-6 million years. Our results strongly favor centromere excision through a one-step process.

摘要

双着丝粒染色体是基因组重排的产物,它将两个着丝粒置于同一条染色体上。由于存在两个主要缢痕,它们本质上是不稳定的,并通过表观遗传方式使两个着丝粒之一失活和/或删除,从而克服其不稳定性,进而产生在细胞分裂过程中能正常分离的功能性单着丝粒染色体。迄今为止,我们对双着丝粒染色体形成、行为和命运的理解,很大程度上是从植物和人类的观察性研究以及酵母和人类细胞中人工产生的新生双着丝粒推断而来。我们研究了人类谱系中固定的染色体融合事件的最新产物——人类2号染色体,其稳定性是通过抑制一个着丝粒而获得的,这导致人类(46条染色体)与我们关系最密切的猿类亲属(48条染色体)之间在染色体数量上存在独特差异。利用分子细胞遗传学、测序和比较序列数据,我们深入表征了2号染色体长臂祖先着丝粒及其侧翼区域的遗迹,深入了解了这种祖先结构,而这种结构很容易推广到所有近端着丝粒染色体的着丝粒。此外,我们的分析提供了追踪大猿类中核糖体DNA和卫星III序列进化历史的机会,从而提出了一个关于包括2号染色体长臂在内的一些人类着丝粒优先失活的新假说。我们的结果提出了两种可能的着丝粒失活模型,以解释人类2号染色体在过去500万至600万年里的进化稳定。我们的结果强烈支持通过一步过程进行着丝粒切除。

相似文献

3
Dicentric chromosomes: unique models to study centromere function and inactivation.
Chromosome Res. 2012 Jul;20(5):595-605. doi: 10.1007/s10577-012-9302-3.
4
Centromeric inactivation in a dicentric human Y;21 translocation chromosome.
Chromosoma. 1997 Sep;106(4):199-206. doi: 10.1007/s004120050240.
5
Centromere inactivation on a neo-Y fusion chromosome in threespine stickleback fish.
Chromosome Res. 2016 Dec;24(4):437-450. doi: 10.1007/s10577-016-9535-7. Epub 2016 Aug 23.
7
9
Centromere activity in dicentric small supernumerary marker chromosomes.
Chromosome Res. 2010 Jul;18(5):555-62. doi: 10.1007/s10577-010-9138-7. Epub 2010 Jun 22.
10
Clonal origin of partially inactivated centromeres in a stable dicentric chromosome.
Cytogenet Cell Genet. 1995;69(3-4):193-5. doi: 10.1159/000133961.

引用本文的文献

1
Complete sequencing of ape genomes.
Nature. 2025 May;641(8062):401-418. doi: 10.1038/s41586-025-08816-3. Epub 2025 Apr 9.
2
Epigenetic control and inheritance of rDNA arrays.
bioRxiv. 2024 Sep 16:2024.09.13.612795. doi: 10.1101/2024.09.13.612795.
3
Complete sequencing of ape genomes.
bioRxiv. 2024 Oct 5:2024.07.31.605654. doi: 10.1101/2024.07.31.605654.
4
Prenatal diagnosis of dicentric chromosome X mosaicism: a case report and review.
Front Genet. 2024 Jul 18;15:1436469. doi: 10.3389/fgene.2024.1436469. eCollection 2024.
8
Deeply conserved synteny and the evolution of metazoan chromosomes.
Sci Adv. 2022 Feb 4;8(5):eabi5884. doi: 10.1126/sciadv.abi5884. Epub 2022 Feb 2.
9
Alpha Satellite Insertion Close to an Ancestral Centromeric Region.
Mol Biol Evol. 2021 Dec 9;38(12):5576-5587. doi: 10.1093/molbev/msab244.
10
The epigenetic regulation of centromeres and telomeres in plants and animals.
Comp Cytogenet. 2020 Jul 7;14(2):265-311. doi: 10.3897/CompCytogen.v14i2.51895. eCollection 2020.

本文引用的文献

1
Centromere repositioning explains fundamental number variability in the New World monkey genus Saimiri.
Chromosoma. 2017 Aug;126(4):519-529. doi: 10.1007/s00412-016-0619-0. Epub 2016 Nov 10.
2
A Half-Century of Studies on a Chromosomal Hybrid Zone of the House Mouse.
J Hered. 2017 Jan;108(1):25-35. doi: 10.1093/jhered/esw061. Epub 2016 Oct 11.
5
6
The past, present, and future of human centromere genomics.
Genes (Basel). 2014 Jan 24;5(1):33-50. doi: 10.3390/genes5010033.
7
MEGA6: Molecular Evolutionary Genetics Analysis version 6.0.
Mol Biol Evol. 2013 Dec;30(12):2725-9. doi: 10.1093/molbev/mst197. Epub 2013 Oct 16.
8
MAFFT multiple sequence alignment software version 7: improvements in performance and usability.
Mol Biol Evol. 2013 Apr;30(4):772-80. doi: 10.1093/molbev/mst010. Epub 2013 Jan 16.
9
Dicentric chromosomes: unique models to study centromere function and inactivation.
Chromosome Res. 2012 Jul;20(5):595-605. doi: 10.1007/s10577-012-9302-3.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验