Department of Chemistry, MS60, Rice University , 6100 Main Street, Houston, Texas 77005, United States.
Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China , Chengdu 610054, China.
ACS Nano. 2017 Apr 25;11(4):4051-4059. doi: 10.1021/acsnano.7b00704. Epub 2017 Mar 27.
A variety of catalysts have recently been developed for electrocatalytic oxygen evolution, but very few of them can be readily integrated with semiconducting light absorbers for photoelectrochemical or photocatalytic water splitting. Here, we demonstrate an efficient core/shell photoanode with a highly active oxygen evolution electrocatalyst shell (FeMnP) and semiconductor core (rutile TiO) for photoelectrochemical oxygen evolution reaction. Metal-organic chemical vapor deposition from a single-source precursor was used to ensure good contact between the FeMnP and the TiO. The TiO/FeMnP core/shell photoanode reaches the theoretical photocurrent density for rutile TiO of 1.8 mA cm at 1.23 V vs reversible hydrogen electrode under simulated 100 mW cm (1 sun) irradiation. The dramatic enhancement is a result of the synergistic effects of the high oxygen evolution reaction activity of FeMnP (delivering an overpotential of 300 mV with a Tafel slope of 65 mV dec in 1 M KOH) and the conductive interlayer between the surface active sites and semiconductor core which boosts the interfacial charge transfer and photocarrier collection. The facile fabrication of the TiO/FeMnP core/shell nanorod array photoanode offers a compelling strategy for preparing highly efficient photoelectrochemical solar energy conversion devices.
最近已经开发出了多种用于电催化氧气析出的催化剂,但很少有催化剂可以与半导体光吸收体轻易地集成,用于光电化学或光催化水分解。在这里,我们展示了一种具有高效活性氧析出电催化剂壳层(FeMnP)和半导体核(金红石 TiO)的核/壳光阳极,用于光电化学氧气析出反应。采用单源前体制备的金属有机化学气相沉积确保了 FeMnP 和 TiO 之间的良好接触。TiO/FeMnP 核/壳光阳极在模拟 100 mW cm(1 太阳)辐照下,在 1.23 V 相对于可逆氢电极达到金红石 TiO 的理论光电流密度 1.8 mA cm。这种显著的增强是由于 FeMnP 具有高氧气析出反应活性(在 1 M KOH 中提供 300 mV 的过电势,塔菲尔斜率为 65 mV dec)和表面活性位点与半导体核之间的导电中间层的协同作用,从而促进了界面电荷转移和光载流子收集。TiO/FeMnP 核/壳纳米棒阵列光阳极的制备方法简单,为制备高效光电化学太阳能转换器件提供了一种有吸引力的策略。