Suppr超能文献

带帽线图度量孪生支持向量机的鲁棒分类。

Capped Linex Metric Twin Support Vector Machine for Robust Classification.

机构信息

School of Mathematics and Information Science, North Minzu University, Yinchuan 750021, China.

出版信息

Sensors (Basel). 2022 Aug 31;22(17):6583. doi: 10.3390/s22176583.

Abstract

In this paper, a novel robust loss function is designed, namely, capped linear loss function Laε. Simultaneously, we give some ideal and important properties of Laε, such as boundedness, nonconvexity and robustness. Furthermore, a new binary classification learning method is proposed via introducing Laε, which is called the robust twin support vector machine (Linex-TSVM). Linex-TSVM can not only reduce the influence of outliers on Linex-SVM, but also improve the classification performance and robustness of Linex-SVM. Moreover, the effect of outliers on the model can be greatly reduced by introducing two regularization terms to realize the structural risk minimization principle. Finally, a simple and efficient iterative algorithm is designed to solve the non-convex optimization problem Linex-TSVM, and the time complexity of the algorithm is analyzed, which proves that the model satisfies the Bayes rule. Experimental results on multiple datasets demonstrate that the proposed Linex-TSVM can compete with the existing methods in terms of robustness and feasibility.

摘要

本文设计了一种新颖的鲁棒损失函数,即限幅线性损失函数 Laε。同时,我们给出了 Laε 的一些理想和重要性质,如有界性、非凸性和鲁棒性。此外,通过引入 Laε,提出了一种新的二进制分类学习方法,称为鲁棒孪生支持向量机(Linex-TSVM)。Linex-TSVM 不仅可以降低异常值对 Linex-SVM 的影响,还可以提高 Linex-SVM 的分类性能和鲁棒性。此外,通过引入两个正则化项来实现结构风险最小化原则,可以大大降低异常值对模型的影响。最后,设计了一种简单高效的迭代算法来求解非凸优化问题 Linex-TSVM,并对算法的时间复杂度进行了分析,证明了该模型满足贝叶斯规则。在多个数据集上的实验结果表明,所提出的 Linex-TSVM 在鲁棒性和可行性方面可以与现有方法相媲美。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b2bf/9460655/b2b852ce0ca6/sensors-22-06583-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验