Suppr超能文献

液体关联的荟萃分析框架。

Meta-analytic framework for liquid association.

机构信息

School of Statistics, Capital University of Economics and Business, Fengtai, Beijing, China.

Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA.

出版信息

Bioinformatics. 2017 Jul 15;33(14):2140-2147. doi: 10.1093/bioinformatics/btx138.

Abstract

MOTIVATION

Although coexpression analysis via pair-wise expression correlation is popularly used to elucidate gene-gene interactions at the whole-genome scale, many complicated multi-gene regulations require more advanced detection methods. Liquid association (LA) is a powerful tool to detect the dynamic correlation of two gene variables depending on the expression level of a third variable (LA scouting gene). LA detection from single transcriptomic study, however, is often unstable and not generalizable due to cohort bias, biological variation and limited sample size. With the rapid development of microarray and NGS technology, LA analysis combining multiple gene expression studies can provide more accurate and stable results.

RESULTS

In this article, we proposed two meta-analytic approaches for LA analysis (MetaLA and MetaMLA) to combine multiple transcriptomic studies. To compensate demanding computing, we also proposed a two-step fast screening algorithm for more efficient genome-wide screening: bootstrap filtering and sign filtering. We applied the methods to five Saccharomyces cerevisiae datasets related to environmental changes. The fast screening algorithm reduced 98% of running time. When compared with single study analysis, MetaLA and MetaMLA provided stronger detection signal and more consistent and stable results. The top triplets are highly enriched in fundamental biological processes related to environmental changes. Our method can help biologists understand underlying regulatory mechanisms under different environmental exposure or disease states.

AVAILABILITY AND IMPLEMENTATION

A MetaLA R package, data and code for this article are available at http://tsenglab.biostat.pitt.edu/software.htm.

CONTACT

ctseng@pitt.edu.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

虽然通过两两表达相关性的共表达分析常用于阐明全基因组范围内的基因-基因相互作用,但许多复杂的多基因调控需要更先进的检测方法。液体关联(LA)是一种强大的工具,可以检测两个基因变量的动态相关性,这取决于第三个变量(LA 侦察基因)的表达水平。然而,由于队列偏差、生物学变异性和有限的样本量,从单个转录组研究中进行 LA 检测通常不稳定且不可推广。随着微阵列和 NGS 技术的快速发展,结合多个基因表达研究的 LA 分析可以提供更准确和稳定的结果。

结果

在本文中,我们提出了两种用于 LA 分析的荟萃分析方法(MetaLA 和 MetaMLA),以结合多个转录组研究。为了弥补计算需求,我们还提出了一种两步快速筛选算法,用于更有效的全基因组筛选:引导过滤和符号过滤。我们将这些方法应用于五个与环境变化相关的酿酒酵母数据集。快速筛选算法将运行时间减少了 98%。与单研究分析相比,MetaLA 和 MetaMLA 提供了更强的检测信号,并且结果更一致和稳定。前三个三重体高度富集与环境变化相关的基本生物学过程。我们的方法可以帮助生物学家理解不同环境暴露或疾病状态下的潜在调节机制。

可用性和实现

本文的 MetaLA R 包、数据和代码可在 http://tsenglab.biostat.pitt.edu/software.htm 获得。

联系人

ctseng@pitt.edu

补充信息

补充数据可在生物信息学在线获得。

相似文献

1
Meta-analytic framework for liquid association.液体关联的荟萃分析框架。
Bioinformatics. 2017 Jul 15;33(14):2140-2147. doi: 10.1093/bioinformatics/btx138.
10
Meta-analysis for pathway enrichment analysis when combining multiple genomic studies.多组学研究整合的通路富集分析的元分析
Bioinformatics. 2010 May 15;26(10):1316-23. doi: 10.1093/bioinformatics/btq148. Epub 2010 Apr 21.

引用本文的文献

4
DNLC: differential network local consistency analysis.DNLC:差异网络局部一致性分析。
BMC Bioinformatics. 2019 Dec 24;20(Suppl 15):489. doi: 10.1186/s12859-019-3046-4.

本文引用的文献

1
KEGG as a reference resource for gene and protein annotation.KEGG作为基因和蛋白质注释的参考资源。
Nucleic Acids Res. 2016 Jan 4;44(D1):D457-62. doi: 10.1093/nar/gkv1070. Epub 2015 Oct 17.
7
Saccharomyces Genome Database: the genomics resource of budding yeast.酿酒酵母基因组数据库:芽殖酵母的基因组资源。
Nucleic Acids Res. 2012 Jan;40(Database issue):D700-5. doi: 10.1093/nar/gkr1029. Epub 2011 Nov 21.
8
Filtering, FDR and power.过滤、 FDR 和功效。
BMC Bioinformatics. 2010 Sep 7;11:450. doi: 10.1186/1471-2105-11-450.
9
Modeling liquid association.模拟液体缔合。
Biometrics. 2011 Mar;67(1):133-41. doi: 10.1111/j.1541-0420.2010.01440.x.
10
Independent filtering increases detection power for high-throughput experiments.独立过滤提高了高通量实验的检测能力。
Proc Natl Acad Sci U S A. 2010 May 25;107(21):9546-51. doi: 10.1073/pnas.0914005107. Epub 2010 May 11.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验