Suppr超能文献

海啸:用于网络分析和挖掘的转化生物信息学工具套件。

TSUNAMI: Translational Bioinformatics Tool Suite for Network Analysis and Mining.

机构信息

School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, USA; Department of Electrical and Computer Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA.

Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA.

出版信息

Genomics Proteomics Bioinformatics. 2021 Dec;19(6):1023-1031. doi: 10.1016/j.gpb.2019.05.006. Epub 2021 Mar 8.

Abstract

Gene co-expression network (GCN) mining identifies gene modules with highly correlated expression profiles across samples/conditions. It enables researchers to discover latent gene/molecule interactions, identify novel gene functions, and extract molecular features from certain disease/condition groups, thus helping to identify disease biomarkers. However, there lacks an easy-to-use tool package for users to mine GCN modules that are relatively small in size with tightly connected genes that can be convenient for downstream gene set enrichment analysis, as well as modules that may share common members. To address this need, we developed an online GCN mining tool package: TSUNAMI (Tools SUite for Network Analysis and MIning). TSUNAMI incorporates our state-of-the-art lmQCM algorithm to mine GCN modules for both public and user-input data (microarray, RNA-seq, or any other numerical omics data), and then performs downstream gene set enrichment analysis for the identified modules. It has several features and advantages: 1) a user-friendly interface and real-time co-expression network mining through a web server; 2) direct access and search of NCBI Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases, as well as user-input gene expression matrices for GCN module mining; 3) multiple co-expression analysis tools to choose from, all of which are highly flexible in regards to parameter selection options; 4) identified GCN modules are summarized to eigengenes, which are convenient for users to check their correlation with other clinical traits; 5) integrated downstream Enrichr enrichment analysis and links to other gene set enrichment tools; and 6) visualization of gene loci by Circos plot in any step of the process. The web service is freely accessible through URL: https://biolearns.medicine.iu.edu/. Source code is available at https://github.com/huangzhii/TSUNAMI/.

摘要

基因共表达网络 (GCN) 挖掘确定了在样本/条件之间具有高度相关表达谱的基因模块。它使研究人员能够发现潜在的基因/分子相互作用,识别新的基因功能,并从特定疾病/病症组中提取分子特征,从而有助于识别疾病生物标志物。然而,目前缺乏一个易于使用的工具包,供用户挖掘相对较小的、基因连接紧密的 GCN 模块,这些模块方便进行下游基因集富集分析,以及可能共享共同成员的模块。为了解决这一需求,我们开发了一个在线 GCN 挖掘工具包:TSUNAMI(网络分析和挖掘工具套件)。TSUNAMI 结合了我们最先进的 lmQCM 算法,用于挖掘公共和用户输入数据(微阵列、RNA-seq 或任何其他数值组学数据)的 GCN 模块,然后对识别出的模块进行下游基因集富集分析。它具有以下几个特点和优势:1)用户友好的界面和通过网络服务器进行实时共表达网络挖掘;2)直接访问和搜索 NCBI 基因表达综合数据库 (GEO) 和癌症基因组图谱 (TCGA) 数据库,以及用户输入的基因表达矩阵,用于 GCN 模块挖掘;3)多种共表达分析工具可供选择,所有工具在参数选择选项方面都非常灵活;4)鉴定的 GCN 模块被总结为特征基因,方便用户检查它们与其他临床特征的相关性;5)集成下游 Enrichr 富集分析,并链接到其他基因集富集工具;6)在流程的任何步骤都可以通过 Circos 图可视化基因座。该网络服务可通过 URL 免费访问:https://biolearns.medicine.iu.edu/。源代码可在 https://github.com/huangzhii/TSUNAMI/ 上获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/15c3/9403021/03bd23e33551/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验