Center for Integrated Nanotechnologies, Sandia National Laboratories , Albuquerque, New Mexico 87185, United States.
Nano Lett. 2017 Apr 12;17(4):2189-2196. doi: 10.1021/acs.nanolett.6b04713. Epub 2017 Mar 28.
Alloyed and compound contacts between metal and semiconductor transistor channels enable self-aligned gate processes which play a significant role in transistor scaling. At nanoscale dimensions and for nanowire channels, prior experiments focused on reactions along the channel length, but the early stage of reaction in their cross sections remains unknown. Here, we report on the dynamics of the solid-state reaction between metal (Ni) and semiconductor (InGaAs), along the cross-section of nanowires that are 15 nm in width. Unlike planar structures where crystalline nickelide readily forms at conventional, low alloying temperatures, nanowires exhibit a solid-state amorphization step that can undergo a crystal regrowth step at elevated temperatures. In this study, we capture the layer-by-layer reaction mechanism and growth rate anisotropy using in situ transmission electron microscopy (TEM). Our kinetic model depicts this new, in-plane contact formation which could pave the way for engineered nanoscale transistors.
金属和半导体晶体管沟道之间的合金和化合物接触使自对准栅极工艺成为可能,这在晶体管缩放中起着重要作用。在纳米尺度和纳米线沟道中,先前的实验主要集中在沿沟道长度的反应上,但它们的横截面的早期反应仍然未知。在这里,我们报告了金属(Ni)和半导体(InGaAs)之间的固态反应沿着宽度为 15nm 的纳米线的横截面的动力学。与在常规低合金化温度下容易形成晶态镍化物的平面结构不同,纳米线表现出固态非晶化步骤,该步骤在高温下可以经历晶体再生长步骤。在这项研究中,我们使用原位透射电子显微镜(TEM)捕获了逐层反应机制和各向异性生长速率。我们的动力学模型描绘了这种新的面内接触形成,这可能为工程纳米尺度晶体管铺平道路。