Lu Wenjie, Lee Younghee, Gertsch Jonas C, Murdzek Jessica A, Cavanagh Andrew S, Kong Lisa, Del Alamo Jesús A, George Steven M
Microsystems Technology Laboratories , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States.
Department of Chemistry , University of Colorado , Boulder , Colorado 80309 , United States.
Nano Lett. 2019 Aug 14;19(8):5159-5166. doi: 10.1021/acs.nanolett.9b01525. Epub 2019 Jul 2.
Thermal atomic layer etching (ALE) was demonstrated on ternary III-V compound semiconductors. In particular, thermal ALE on InGaAs and InAlAs was achieved with sequential, self-limiting fluorination and ligand-exchange reactions using hydrogen fluoride (HF) as the fluorination reactant and dimethylaluminum chloride (DMAC) as the ligand-exchange reactant. Thermal ALE was investigated on planar surfaces and three-dimensional nanostructures. The measured radial etch rates on InGaAs and InAlAs vertical nanowires (VNWs) at 300 °C were 0.24 and 0.62 Å/cycle, respectively. An optimized thermal ALE process did not increase the surface roughness after 200 cycles. The etching process also displayed selectivity and orientation dependence. This new thermal ALE process in combination with in situ atomic layer deposition (ALD) was used to fabricate InGaAs gate-all-around structures with minimum width down to 3 nm. The in situ ALE-ALD process produced a sharp vertical MOS interface. Finally, the merits of thermal ALE were demonstrated in the fabrication of n-channel InGaAs FinFETs with record ON-state and OFF-state transistor performance. On the basis of this transistor demonstration, thermal ALE shows great promise for high-volume device manufacturing.
在三元III-V族化合物半导体上展示了热原子层蚀刻(ALE)。具体而言,以氟化氢(HF)作为氟化反应物、二甲基氯化铝(DMAC)作为配体交换反应物,通过连续的自限性氟化和配体交换反应,实现了对铟镓砷(InGaAs)和铟铝砷(InAlAs)的热ALE。对平面表面和三维纳米结构进行了热ALE研究。在300°C下,测得的铟镓砷和铟铝砷垂直纳米线(VNW)的径向蚀刻速率分别为0.24和0.62 Å/周期。经过200个周期后,优化的热ALE工艺并未增加表面粗糙度。蚀刻工艺还表现出选择性和取向依赖性。这种新的热ALE工艺与原位原子层沉积(ALD)相结合,用于制造最小宽度低至3 nm的铟镓砷全栅结构。原位ALE-ALD工艺产生了陡峭的垂直MOS界面。最后,在制造具有创纪录的导通状态和截止状态晶体管性能的n沟道铟镓砷鳍式场效应晶体管(FinFET)中展示了热ALE的优点。基于该晶体管演示,热ALE在大规模器件制造方面显示出巨大的潜力。