Antić-Mladenović Svetlana, Frohne Tina, Kresović Mirjana, Stärk Hans-Joachim, Savić Dubravka, Ličina Vlado, Rinklebe Jörg
University of Belgrade-Faculty of Agriculture, Nemanjina 6, 11 080, Belgrade, Serbia.
University of Bielefeld, Department for Information Management and University Development, Universitätsstraße 25, 33615, Bielefeld, Germany; University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany.
Chemosphere. 2017 Jul;178:268-276. doi: 10.1016/j.chemosphere.2017.03.060. Epub 2017 Mar 16.
To our knowledge, this is the first work to mechanistically study the impact of the redox potential (E) and principal factors, such as pH, iron (Fe), manganese (Mn), dissolved organic carbon (DOC), dissolved inorganic carbon (DIC), chlorides (Cl) and sulfates (SO), on the release dynamics of thallium (Tl) in periodically flooded soil. We simulated flooding using an automated biogeochemical microcosm system that allows for systematical control of pre-defined redox windows. The E value was increased mechanistically at intervals of approximately 100 mV from reducing (-211 mV) to oxidizing (475 mV) conditions. Soluble Tl levels (0.02-0.28 μg L) increased significantly with increases in E (r = 0.80, p < 0.01, n = 30). Thallium mobilization was found to be related to several simultaneous processes involving the gradual oxidation of Tl-bearing sulfides, reductive dissolution of Fe-Mn oxides and desorption from mineral sorbents. Manganese oxides did not appear to have a considerable effect on Tl retention under oxidizing conditions. Before conducting the microcosm experiment, Tl geochemical fractionation was assessed using the modified BCR sequential extraction procedure. The BCR revealed a majority of Tl in the residual fraction (77.7%), followed by reducible (13.3%) and oxidizable fractions (5.9%). By generating high levels of Tl toxicity at low doses, Tl released under oxidizing conditions may pose an environmental threat. In the future, similar studies should be conducted on various soils along with a determination of the Tl species and monitoring of the Tl content in plants to achieve more detailed insight into soluble Tl behavior.
据我们所知,这是第一项从机理上研究氧化还原电位(E)以及pH值、铁(Fe)、锰(Mn)、溶解有机碳(DOC)、溶解无机碳(DIC)、氯化物(Cl)和硫酸盐(SO)等主要因素对周期性淹水土壤中铊(Tl)释放动力学影响的研究。我们使用自动生物地球化学微观系统模拟淹水,该系统能够系统地控制预先定义的氧化还原窗口。E值以大约100 mV的间隔从还原(-211 mV)到氧化(475 mV)条件进行机械增加。可溶性Tl水平(0.02 - 0.28 μg L)随着E的增加而显著增加(r = 0.80,p < 0.01,n = 30)。发现铊的迁移与几个同时发生的过程有关,包括含铊硫化物的逐渐氧化、铁 - 锰氧化物的还原溶解以及从矿物吸附剂上的解吸。在氧化条件下,锰氧化物似乎对铊的保留没有显著影响。在进行微观实验之前,使用改进的BCR连续萃取程序评估了Tl的地球化学分馏。BCR分析表明,大部分Tl存在于残留部分(77.7%),其次是可还原部分(13.3%)和可氧化部分(5.9%)。在氧化条件下释放的Tl可能会在低剂量时产生高水平的Tl毒性,从而对环境构成威胁。未来,应该对各种土壤进行类似的研究,并确定Tl的形态以及监测植物中的Tl含量,以便更详细地了解可溶性Tl的行为。