Suppr超能文献

纳米氧化铜修饰碳布作为双室微生物燃料电池的阴极

Nano Copper Oxide-Modified Carbon Cloth as Cathode for a Two-Chamber Microbial Fuel Cell.

作者信息

Dong Feng, Zhang Peng, Li Kexun, Liu Xianhua, Zhang Pingping

机构信息

Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China.

School of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.

出版信息

Nanomaterials (Basel). 2016 Dec 9;6(12):238. doi: 10.3390/nano6120238.

Abstract

In this work, Cu₂O nanoparticles were deposited on a carbon cloth cathode using a facile electrochemical method. The morphology of the modified cathode, which was characterized by scanning electron microscopy (SEM) and Brunauer-Emmett-Teller (BET) tests, showed that the porosity and specific surface area of the cathode improved with longer deposition times. X-ray photoelectron spectroscopy (XPS) and cyclic voltammetry (CV) results showed that cupric oxide and cuprous oxide coexisted on the carbon cloth, which improved the electrochemical activity of cathode. The cathode with a deposition time of 100 s showed the best performance, with a power density twice that of bare carbon cloth. Linear sweep voltammetry (LSV) and electrochemical impedance spectroscopy (EIS) results revealed that moderate deposition of nano copper oxide on carbon cloth could dramatically reduce the charge transfer resistance, which contributed to the enhanced electrochemical performance. The mediation mechanism of copper oxide nanocatalyst was illustrated by the fact that the recycled conversion between cupric oxide and cuprous oxide accelerated the electron transfer efficiency on the cathode.

摘要

在这项工作中,采用简便的电化学方法将Cu₂O纳米颗粒沉积在碳布阴极上。通过扫描电子显微镜(SEM)和布鲁诺尔-埃米特-泰勒(BET)测试对改性阴极的形貌进行表征,结果表明,随着沉积时间延长,阴极的孔隙率和比表面积得到改善。X射线光电子能谱(XPS)和循环伏安法(CV)结果表明,碳布上同时存在氧化铜和氧化亚铜,这提高了阴极的电化学活性。沉积时间为100 s的阴极表现出最佳性能,功率密度是裸碳布的两倍。线性扫描伏安法(LSV)和电化学阻抗谱(EIS)结果表明,在碳布上适度沉积纳米氧化铜可显著降低电荷转移电阻,这有助于提高电化学性能。氧化铜纳米催化剂的介导机制体现在氧化铜和氧化亚铜之间的循环转化加速了阴极上的电子转移效率这一事实上。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8901/5302713/ccd5ed8516f1/nanomaterials-06-00238-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验