Heendeniya Ravindra G, Yu Peiqiang
Department of Animal and Poultry Science, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK S7N5A8, Canada.
Int J Mol Sci. 2017 Mar 20;18(3):664. doi: 10.3390/ijms18030664.
( L.) genotypes transformed with and transcription genes were developed with the intention of stimulating proanthocyanidin synthesis in the aerial parts of the plant. To our knowledge, there are no studies on the effect of single-gene and two-gene transformation on chemical functional groups and molecular structure changes in these plants. The objective of this study was to use advanced molecular spectroscopy with multivariate chemometrics to determine chemical functional group intensity and molecular structure changes in plants when co-expressing and transcriptive flavanoid regulatory genes in comparison with non-transgenic (NT) and AC Grazeland (ACGL) genotypes. The results showed that compared to NT genotype, the presence of double genes ( and ) increased ratios of both the area and peak height of protein structural Amide I/II and the height ratio of α-helix to β-sheet. In carbohydrate-related spectral analysis, the double gene-transformed genotypes exhibited lower peak heights at 1370, 1240, 1153, and 1020 cm compared to the NT genotype. Furthermore, the effect of double gene transformation on carbohydrate molecular structure was clearly revealed in the principal component analysis of the spectra. In conclusion, single or double transformation of and genes resulted in changing functional groups and molecular structure related to proteins and carbohydrates compared to the NT genotype. The current study provided molecular structural information on the transgenic plants and provided an insight into the impact of transgenes on protein and carbohydrate properties and their molecular structure's changes.
用 和 转录基因转化的(L.)基因型的培育目的是刺激植物地上部分原花青素的合成。据我们所知,尚无关于单基因和双基因转化对这些植物化学官能团和分子结构变化影响的研究。本研究的目的是使用先进的分子光谱结合多元化学计量学,来确定与非转基因(NT)和AC Grazeland(ACGL)基因型相比,共表达 和 转录类黄酮调控基因时 植物中化学官能团强度和分子结构的变化。结果表明,与NT基因型相比,双基因( 和 )的存在增加了蛋白质结构酰胺I/II的面积和峰高比值以及α-螺旋与β-折叠的高度比值。在碳水化合物相关光谱分析中,与NT基因型相比,双基因转化的 基因型在1370、1240、1153和1020 cm处的峰高较低。此外,光谱的主成分分析清楚地揭示了双基因转化对碳水化合物分子结构的影响。总之,与NT 基因型相比, 和 基因的单基因或双基因转化导致了与蛋白质和碳水化合物相关的官能团和分子结构的变化。本研究提供了转基因 植物的分子结构信息,并深入了解了转基因对蛋白质和碳水化合物性质及其分子结构变化的影响。